已知数列{an}中(1)a1=1,且anan 1=2^n,求通项公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:16:07
a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-
a1=2=2/1a2=1/2+1=3/2a3=2/3+1=5/3a4=3/5+1=8/5a5=5/8+1=13/8所以对第n项的分母来说,有以下规律1,2,3,5,8,后一项是前一项与再前一项的和,由
(1)数列{an}中,a1=1,前n项和Sn=n+23an,可知S2=43a2,得3(a1+a2)=4a2,解得a2=3a1=3,由S3=53a3,得3(a1+a2+a3)=5a3,解得a3=32(a
先求倒数1/a(n+1)=(an+2)/(2an)1/a(n+1)=1/2+(1/an)所以1/an是一个等差数列,公差d为1/2所以1/an=1/a1+(n-1)*d=1/a1+(n-1)/2
an+1-an=-1不对,前一个式子是an+1=an/1-an,重新算一下
a(n+1)-an=2n所以a2-a1=2a3-a2=4a4-a3=6……an-a(n-1)=2(n-1)相加得an-a1=2+4+6+……+2(n-1)=n(n-1)所以当n>1时,an=n(n-1
由题意得an+1=an1+2an,则-2an+1•an=an+1-an,两边除以an+1•an得,1an+1−1an=2,∴数列{1an}是以1为首项,2为公差的等差数列,∴1an=1+(n-1)×2
解:an*a(n+1)+a(n+1)=2an两边同时除以an*(an+1)得:1+1/an=2/a(n+1)设:bn=1/an则:2b(n+1)=bn+12[b(n+1)-1]=bn-1[b(n+1)
解题步骤多,请点:http://hi.baidu.com/%B0%D7%CF%C8%C9%F9/album/item/76e496eee56912eab2fb95ee.html
解题思路:构造数列解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph
x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10
∵数列{log2(an+1-an3)}是公差为-1的等差数列,∴log2(an+1-an3)=log2(a2-13a1)+(n-1)(-1)=log2(1936-13×56)-n+1=-(n+1),于
an+1-an=2^nan-an-1=2^n-1a2-a1=2^1-1an-a1=2^1+2^2+2^3+...2^n-1an=2^n+1
因为2an=Sn*S(n-1)所以2(Sn-S(n-1))=Sn*S(n-1)两边同除Sn*S(n-1)整理的1/Sn-1/S(n-1)=-1/2(n>1)所以数列{1/Sn}是以1/Sn=1/a1=
此类题目采用累加法或迭代法∵an+1-an=3n(往下递推)∴an-an-1=3(n-1)an-1-an-2=3(n-2).a3-a2=3×2a2-a1=3×1以上格式左边+左边=右边+右边左边相加的
a(n+1)-3=1/2a(n)-3/2=1/2(a(n)-3)所以a(n)-3是等比数列,公倍为1/2a(n)-3=(1/2)^(n-1)*(a(1)-3)所以a(n)=(1/2)^(n-1)*1+
a1=aa(n+1)+an=4n-1-->a(0+1)+a0=-1-->a1+a0=-1-->a0=-1-a(1)若a=1则a0=-1-1=-2a1=1a2=a(1+1)=4-1-a1=2a3=a(2
a(n+1)*(1-an)=ana(n+1)=an/(1-an)1/a(n+1)=(1/an)-11/a(n+1)-1/an=-1{1/an}是以公差为-1的等差数列1/an=-1+(n-1)*(-1
sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1
(1)证明:由an+1=2an+1,得an=2an-1+1(n≥2),两式相减得:(an+1-an)=2(an-an-1).∵bn=an+1-an,∴bn=2bn-1.又b1=a2-a1=(2a1+1