已知数列是首项为a,公差为d的等差数列,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:48:16
即对任意n∈N,(a+n)/(a+n-1)≥(a+8)/(a+7)两边同减1:1/(a+n-1)≥1/(a+7)此不等式可分三种情况:(1)a+7≥a+n-1〉0显然n≥8时不成立(2)0〉a+n-1
sn=a1+a2+...+an=a1+(a1+d)+...+(a1+(n-1)d)=na1+(1+2+3+...+(n-1))d=na1+(n-1)nd/2;如果d=2an=11;sn=na1+(n-
显然有:an=a1+(n-1)d,bn=b1*q^(n-1),又a3=b3,a7=b5,所以:a1+2d=a1*q^2,①a1+6d=a1*q^4,②由上面2个式子,得到:3①-②:2a1=a1*(3
∵{an}是AP,∴a2+a3+a4=3a3∵a2+a3+a4=15∴a3=5a2=a3-d,a4=a3+d.(a3-1)²=a2·a4(5-1)²=(5-D)(5+D)16=25
由题an递推公式为an=a1+(n-1)d把n用4n-3代替有递推公式a(4n-3)=a1+(n-1)*4d则a(4n-3)也是等差数列,公差为4d
由题意得:an=3n-2bn=4n+1设an的第m项和bn的第k项的数值相等:3m-2=4k+1m=4k/3+1因为m为正整数,所以k为3的倍数所以相同项分别是数列bn的b3、b6、b9、.b3n设c
1.an=a1+(n-1)d=2+n-1=n+1Sn=(a1+an)*n/2=n(n+3)/22.bn=2^(n+1)bn是以b1=4为首项,2为公比的等比数列,Tn=b1(1-q^n)/(1-q)=
ak=48+2kbk=10+(k-1)dSk=(48+2k)[10+(k-1)d]令SK≤21即(48+2k)[10+(k-1)d]≤21求出k来.再问:最大圆面积为Sk
因为a(k1),a(k2),…,a(kn)恰为等比数列,又k1=1,k2=5,k3=17所以a5的平方=a1乘以a17又因为数列{an}为等差数列且公差d≠0所以a5=a1+4da17=a1+16d所
等差数列{An}的首项为a1,公差为dAn=a1+(n-1)dBn=3[a1+(n-1)d]+4Bn=3a1+3(n-1)d+4B(n-1)=3a1+3(n-1-1)d+4=3a1+3(n-2)d+4
等差数列拿掉有限项后的公差不变,还是d拿掉m项后,原数列的第m+1项作为新数列的第一项.而原数列的第n+1项=a1+m*d(an=a1+(n-1)*d,这里n取m+1)所以首项am+1=a1+md
由a6=23+5d>0和a7=23+6d<0,得公差d=-4由a6>0,a7<0,∴S6最大,S6=8.由a1=23,d=-4,则Sn=1/2n(50-4n),设Sn>0,得n<12.5,整数n的最大
(1)由已知条件,a,a+4,a+6为等比数列,所以a(a+6)=(a+4)^2a=-8an=2n-10(2)c(n+1)-cn=(1/2)^n所以c(n+1)=cn+(1/2)^n=c(n-1)+(
f(n)=n^2+(a/2)*n+(a/2)+(1/2)^(n-1)-3如果把a看成变量,g(a)=0.5(n+1)*a+n^2+0.5^(n-1)-3系数是恒正的,所以最小值是a=-16时取到,f(
∵方程ax^2-3x+2=0的解为1,d∴1+d=3/a,1*d=2/a解得:a=1,d=2则an=a1+(n-1)d=1+2(n-1)=2n-1∴Tn=3^0*1+3^1*3+3^2*5+……+3^
{lgan}是首项为3公差为2lgan=3+2(n-1)=2n+1an=10^(2n+1)a1=10^3=1000q=10所以an为首项为1000公比为10的等比数列
由a/an=bn,得a/a=b,{an}是公差为d的等差数列,{bn}是公比是q的等比数列,∴a/a*an/a=q,即[a1+(n-1)d][a1+(n+1)d]/[a1+nd]^2=q(常数)对n∈
由题意得an=a+2(n-1)=2n+a-2所以2bn=(n+1)an=(n+1)(2n+a-2)bn=(n+1)(2n+a-2)/2b5=6*(n+8)/2=3(n+8)bn≥b5在n属于N+恒成立
由a6=23+5d>0和a7=23+6d<0,得公差d=-4由a6>0,a7<0,∴S6最大,S6=8.由a1=23,d=-4,则Sn=1/2n(50-4n),设Sn>0,得n<12.5,整数n的最大