已知是三元非齐次线性方程Ax=b的解,且r(A)=1及
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:20:10
AX=0的基础解系含n-r(A)=3-2=1个向量所以(α2+α3)-2α1=(0,2,4)^T≠0是AX=0的基础解系所以通解为(1,1,1)^T+k(0,2,4)^T再问:谢谢老师,看来是答案错了
问题一:非齐次线性方程组Ax=b的解要用增广矩阵的秩来判定:1、当r(A)
α1,α2,是对应的齐次线性方程组AX=0的解,是A的属于特征值0的特征向量,β是A的属于特征值1的特征向量.
令【x3,x4】T=【1,0】T得【x1,x2】T=【-1/2,3/2】T所以一个基础解系为ξ1=【-1/2,3/2,1,0】T再令【x3,x4】T=【0,1】T得【x1,x2】T=【0,-1】T所以
经典题目,经典证法设k1(α1+β)+k2(α2+β)+k3(α3+β)=0.则(k1+k2+k3)β+k1α1+k2α2+k3α3=0(*)等式两边左乘A得(k1+k2+k3)Aβ+k1Aα1+k2
设A为mxn实矩阵,A^tA是正定矩阵,所以|A^tA|>0,从而(A^tA)的秩是n从而方程(A^tA)X=0只有零解.下面只要证方程(A^tA)X=0与方程AX=0有相同的解即可.1)设α设是方程
显然不是
非齐次线性方程组的通解等于它的特解加上对应的齐次线性方程组的通解,所以,特解就是(1,1,1),齐次线性方程组的通解是(1,-2,0),(3,2,1)可以看看其定义,明白不?
这个有点简单,发挥不出来,嘿嘿(C),(D)向量个数不是3个,不是(B)(X1-X3)+(X2-X1)+(X3-X2)=0,所以线性相关,也不对那就只有(A)正确了.
由已知,AX=0的基础解系含3-r(A)=1个解向量所以Y2-Y1=(2,-1,5)^T是AX=0的基础解系所以AX=B的通解为(1,2,3)^T+c(2,-1,5)^T.搞定就采纳哈.
首先b,a1,a2必线性无关,否则如果b,a1,a2线性相关,而由a1,a2线性无关知,b可被a1,a2线性表示,于是b也是AX=0的解,而不是AX=C的解.现在设k1*b+k2*(b+a1)+k3*
若r1,r2线性相关则r1,r2成倍数关系,既有r1=kr2而知道r1-r2为齐次方程的解,r1-r2=(1-k)r2所以有A(1-k)r2=(1-k)Ar2=0与Ar2=b矛盾!,所以两个无关如果A
k(a1-a2)+a1再问:(A)ka1;(B)ka2;(C)k(a1-a2);(D)k(a1+a2)这几个选项选c吗?再答:嗯
因为矩阵A的秩为1所以AX=0的基础解系的基数为2又X1,X2,X3是三个解向量所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基础解系AX=β的解为通解加特解,它的解为
因为R(A)=1所以AX=0的基础解系含3-1=2个向量(a1+a2)-(a2+a3)=(1,3,2)^T(a1+a2)-(a1+a3)=(0,2,4)^T是AX=0的线性无关的解,故为基础解系(a1
这样来想,A*(k1a1+k2a2+k3a3)=k1*Aa1+k2*Aa2+k3*Aa3a1a2a3都是非齐次线性方程AX=B的解所以Aa1=Aa2=Aa3=B,那么A*(k1a1+k2a2+k3a3
齐次线性方程Ax=0的基础解系含4-r(A)=4-2=2个向量
用矩阵乘积经济数学团队帮你解答.满意请及时评价.谢谢!