已知是阶矩阵,且满足方程,证明的特征值只能是0或-2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:13:26
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

A是n阶非零矩阵,A*是其伴随矩阵,且满足aij=Aij,证明A可逆

n=2的时候直接把A*写出来验证n>2的时候看A*的秩就行了,A^T=A*=>rank(A^T)=rank(A*),只有零矩阵和满秩矩阵才满足这一点.还有一种方法是利用(A*)*=|A|^{n-2}A

已知A,B为3阶矩阵,A可你且满足A^2-AB=3I.求,证明:A-B可逆

证明:由A^2-AB=3I得A(A-B)=3I等式两边取行列式得|A||A-B|=|3I|=3^3|I|=27.所以|A-B|≠0所以A-B可逆.注:已知条件给出了A可逆,实际上并不需要,反而可以证明

求解【线性代数】 设A是n阶矩阵, ⑴若A满足矩阵方程A²-A+I=O,证明:A和I-A都可逆,并

2题的解法一样 根据要证明可逆的矩阵凑积=单位矩阵的多项式 2题过程如下图: 

已知A是n阶矩阵,且满足方程A2+2A=0, 证明A的特征值只能是0或-2.

证明:设a是A的特征值,则a^2+2a是A^2+2A的特征值而A^2+2A=0,零矩阵的特征值只能是0所以a^2+2a=0所以a(a+2)=0所以a=0或a=-2即A的特征值只能是0或-2.

已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆

反证,若E-BA不可逆,则存在X不为0,使(E-BA)X=0(方和有非零解)->X=BAX,则(E-AB)AX=AX-ABAX=AX-AX=0也即(E-AB)Y=0有非零解(其中Y=AX),与题设矛盾

已知:n阶矩阵A满足A=A平方,证明:E-2A可逆且(E-2A)的负一次方等于E-2A

A=A^24A^2-4A+E=E(E-2A)(E-2A)=E所以E-2A可逆且(E-2A)的负一次方等于E-2A

设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.

假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,

设A为n阶矩阵,且满足方程3A^-2A+4I=0.证明A与3A+2I均可逆

由已知,A(3A-2E)=-4I所以A可逆,且A^-1=(-1/4)(A-2E).再由3A^-2A+4I=0得A(3A+2I)-(4/3)(3A+2I)+8/3I=0所以(A-(4/3)I)(3A+2

已知矩阵A,B满足AB=BA,证明:A,B是同级方阵

设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.

.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.

A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2

一道线性代数可逆证明已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆

我们发现这题的条件比较少,所以考虑用反证法假设E-BA不可逆,就是|E-BA|=0这样一来,(E-BA)x=0就有非零解.所以我们设α是一个非零解,然后把它(或者另外一个非零解)带入(E-AB)x=0

已知n阶矩阵A满足A^2-2A-3E=0,证明A的特征值只能是-1或3,怎么证明只能?

等式两边去行列式就行了,得到2个等式即为丨-E-A丨=0或者丨3E-A丨=0再根据矩阵的特征多项式丨λE-A丨=0即可看出A的特征值为-1或者3再问:为什么是只能?再答:如果它还有别的特征值比如说0,

大学线性代数证明题,设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值

因为AAT=E,所以A为正交矩阵,且|A|再问:直接把A提出来,|AB|=|A||B|

已知n阶对称矩阵A(未必可逆)满足A^=2A,证明A-I是正交矩阵

A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握

已知A是n阶正定矩阵,证明A的伴随矩阵A*也是正定矩阵.

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

证明一个N阶实对称矩阵A是正定的当且仅当存在可逆实对称矩阵B,满足A=B*B

若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上

已知A ,B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA是可逆矩阵.

只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A