已知椭圆的离心率为1 2,其中一个端点时双曲线x2 9-y2 16=1的交点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:38:43
已知椭圆的离心率为三分之根号五,且该椭圆与双曲线四分之X平方减Y平方等于一交点相同,求椭圆的标准方...

x^2/4-y^2=1a^2=4,b^2=1,c^2=4+1=5.焦点相同,则椭圆c^2=5e=c/a=根号5/3,c^2/a^2=5/9故a^2=9b^2=a^2-c^2=9-5=4故椭圆方程x^2

已知椭圆的方程为2x^2+3y^2=m,则此椭圆的离心率为

2x^2+3y^2=mx^2/(m/2)+y^2/(m/3)=1故有a^2=m/2,b^2=m/3,c^2=m/2-m/3=m/6e^2=c^2/a^2=1/3e=根号3/3再问:欸?我怎么觉得370

已知正方形ABCD,已AC为焦点且过点B的椭圆离心率?

两焦点间的距离是:2c=边长×√2椭圆上的点到两焦点的距离和是:2a=边长×2离心率是c/a=√2÷2=二分之跟二

已知椭圆的焦距是长轴长与短轴长的等比中项,则椭圆的离心率为?

因为(2c)^2=2a*2b所以c^2=ab所以b=c^2/a因为a^2=b^2+c^2所以a^2=(c^2/a)^2+c^2故(c/a)^4+(c/a)^2-1=0所以(c/a)^2=(-1±√(1

已知椭圆的中心在原点,焦点在x轴上,离心率为

你可以以等腰三角形的底边为坐标原点,建立一个直角坐标系!那么等腰三角形的顶点就在y轴上了!在第一象限的那条等腰三角形的腰所在的直线,它与x轴有夹角.我们可以先假设这个夹角为a.那么这条腰所在直线斜率就

已知椭圆的离心率为1/2,焦点是(-3,0),(3,0),则椭圆的方程是?

c=3e=c/a=1/2则a=6b^2=a^2-c^2=27椭圆方程为x^2/36+y^2/27=1

已知椭圆X方/A方 +Y方/B方=1,离心率为根号2/2,其中左焦点为F(-2,0)求椭圆方程

焦点是F(-2,0),则:c=2又:e=c/a=√2/2得:a=2√2则:b²=a²-c²=4得:x²/8+y²/4=1

已知椭圆上有一点P ,P点与椭圆的长轴两顶点连线的斜率之积为负二分之一,求椭圆离心率为多少?

x^2/a^2+y^2/b^2=1P(x,y),A(-a,0),B(a,0)kPA=y/(x+a),kPB=y/(x-a)kPA*kPB=-1/2y/(x+a)*y/(x-a)=-1/2x^2+2y^

已知椭圆的两个焦点为F1 F2 A为椭圆上一点 且AF1⊥AF2 ∠AF2F1 求该椭圆的离心率

如图,因为AF1⊥AF2      所以三角形A F1 F2 是直角三角形   

(2013•宜宾一模)已知椭圆C的中心在原点,焦点在x轴上,离心率为12,短轴长为43.

(Ⅰ)设C方程为x2a2+y2b2=1(a>b>0)由已知b=23,离心率e=ca=12,a2=b2+c2 …(3分)得a=4,所以,椭圆C的方程为x216+y212=1…(4分)(Ⅱ)①由

已知椭圆x2/a2+已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为根号2/2其中左焦点F(-20)(1)求椭

离心率e=c/a,c=2,2/a=√2/2,a=2√2,b^2=a^2-c^2=4,设A(x1,y1),B(x2,y2),椭圆方程为:x^2/8+y^2/4=1,y=x+m,代入椭圆方程,x^2/8+

已知椭圆的焦距、短轴长、长轴长成等差数列,则该椭圆的离心率为(  )

设长轴为2a,短轴为2b,焦距为2c,则2a+2c=2×2b,即a+c=2b⇒(a+c)2=4b2=4(a2-c2)整理得5e2+2e-3=0,∴e=35或e=-1(舍去),故选B.

已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,其中左焦点F(-2,0)

由条件得:离心率=c/a=√2/2c=2可求得a=二倍根号2a方为8得b=2方程为x2/8+y2/4=1将椭圆方程和直线方程相联立得出3x2+4mx+2m2-8=0由韦达定理得x1+x2=-4m/3同

已知椭圆的焦点到相应准线的距离为长半轴长,求椭圆的离心率

依题意,得a²/c-c=a故a²-c²=ace=c/a,得c=ea代入上式得a²-e²a²=ea²e²+e-1=0解得e

(2012•枣庄一模)已知椭圆C1:x2a2+y2b2=1(a>b>0)的离心率为12,椭圆上一点到一个焦点的最大值为3

(1)由题意,a+c=3ca=12,∴a=2,c=1,∴b2=a2-c2=3,∴椭圆C1的方程为x24+y23=1;(2)由(1)知A(0,3),且直线AP的斜率存在,设其斜率为k,则直线AP的方程为

已知椭圆离心率为2分之一,焦点到对应准线的距离为3,求椭圆的标准方程

c/a=1/2,a²/c-c=3,a²=b²+c²三方程联立解得:a=2,c=1,b=√3所以椭圆方程为x²/4+y²/3=1

椭圆的离心率为12

e=12,a=2c设中心是(m,0),准线x=1,因为椭圆中焦点比准线离中心更近,所以中心在(3,0)右边,所以m>3,则c=焦点到中心距离=m-3准线到中心距离=a2c=m−1,所以a2c−c=2,

高一数学题:关于椭圆定义及应用,椭圆,椭圆离心率,准线的问题

解题思路:思路引导,题型分析,考点分析,以及题型点评更多内容也详见解题过程。解题过程: