已知正方形abcd中,点m.n分别在直线bc和直线cd上,角man=45
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:35:00
把⊿ABM绕A逆时针旋转90º,到达⊿ADG. AM=AG, MN=BM+DN=GN ,AN=AN &
证明:延长CD到P,使DP=BM,连接AP∵四边形ADCB是正方形∴∠B=∠ADP=90°,AB=AD∴△AMB≌△APD∴∠MAB=∠PAD,AM=AP,∠MAP=90∵AN平分∠DAM∴∠DAN=
证明:延长CB到G使BG=DN,∵AB=AD,GB=DN,∠AGB=∠ADN=90°,∴△AGB≌△AND,∴AG=AN,∠GAB=∠NAD∵∠MAN=45°,∠BAD=90°,∴∠GAM=∠NAM=
以A1为原点,A1B1,A1D1,A1A为xyz轴建系设棱长为1,则B1D1→=(-1,1,0),DC1→=(1,0,-1)∵MN⊥B1D1,MN⊥DC1,即MN所在直线的方向向量是B1D1→和DC1
NM‖A1C1‖AC‖FGN,M,F,G共面α,D1M‖=AF,D1MFA是平行四边形,D1A‖MFNE‖D1A‖MF.N,E,M,F共面.E∈面(NMF)=α,同理H∈α,E,F,G,H,M,N六点
如图,作MQ⊥BC于Q,MQ交AE于F∵正方形abcd∴∠D=90°,AD=CD=12∵DE=5∴AE=Sqrt(AD^2+DE^2)=13∵MN为ae中垂线∴∠APM=90°,AP=AE/2=13/
⑴ ⊿ABE≌⊿ADN﹙SAS﹚∴∠DAN=∠BAE ∠NAE=∠NAB+∠BAE=∠NAB+∠DAN=90º ∴∠MAE=90º-∠MA
取AD中点,记为F,连接FM,则AF=DF=1/2AD=AM故三角形AFM为等腰直角三角形又有,角FMD=角AFM-角FDM=45°-角FDM角MNB=角NBE-角NMB=45°-角NMB角FDM=角
证明:(1)连接AC,则AC一定过点P,连接AB1.∵A1M=MA,A1N=NB1,∴MN∥AB1.又MN⊄平面AB1C,AB1⊂平面AB1C,∴MN∥平面AB1C,即MN∥平面PB1C.(2)连D1
⊿ABM绕A逆时针旋转90º,到达⊿ADG,GN=BM+DN=MN ∴⊿ANM≌⊿ANG(SSS)∠NAM=∠NAG, ∠MAG=∠MAD
1MN=MB+DN延长ND到P使DP=BM∵AB=AD,ABM=ADP,BM=DP∴△ABM≌△ADP∴AM=AP,BAM=DAp∴NAP=NAD+DAP=NAD+BAM=90-MAN=45=MAN∵
证明:延长CD到P,使DP=BM,连接AP因为四边形ADCB是正方形所以∠B=∠ADP=90度,AB=AD,AB//DC所以△ABM≌△ADP所以∠BAM=∠PAD,AM=AP因为AN平分∠DAM所以
第一问用三角形全等证根据正方形的性质可知OA=OB=OC,AC⊥BD∵MN‖AB∴OM=ON又∵OB=OC,∠MOB=∠NOC∴△MOB≌△NOC∴BM=CN第二问延长CN交BM于点E∵△MOB≌△N
在正方形ABCD中AD=AB=4,∠A=∠B=90°∵AM=1,BN=0.75∴BM=3∴AD/AM=BM/BN=4∴⊿ADM∽⊿BMN∴∠ADM=∠BMN∵∠ADM+∠AMD=90°∴∠BMN+∠A
∵线段D1Q与OP互相平分,且MQ=λMN,∴Q∈MN,∴只有当四边形D1PQO是平行四边时,才满足题意,此时有P为A1D1的中点,Q与M重合,或P为C1D1的中点,Q与N重合,此时λ=0或1故选C.
设P在AB上,Q在CD上,M在BC上,N在AD上,且PQ=MN.过A作AE‖PQ交CD于E,过D作DF‖MN交BC于F,∴AE=PQ,DF=MN,得AE=DF,由AD=CD,∴△ADE≌△DCF(H,
证明:延长CB到点E,使BE=DN,连接AE易证△ABE≌△ADN∴∠AND=∠E,∠BAE=∠DAN∵AB‖CD∴∠AND=∠BAN=∠BAM+∠MAN∵∠DAN=∠MAN=∠BAE∴∠AND=∠B
如图,延长DA到F:MA=AF. ∠EBM=∠BME=∠BMF=∠MFB⊿BMF∽⊿EBM.MB/MF=BE/MB. MB²=MF×BE=2MA×BE
以前考试收藏过,题一样,不过比你多了一问,直接给你发图片吧:
学习一下思路切来的(2012•鸡西)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=