已知直角坐标系XOY中有一个椭圆,左焦点F(-更好3,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:32:43
如图,已知在平面直角坐标系xOy中有一个椭圆,它的中心在原点,左焦点为F(-√3,0),且右顶点为D(2,0),设点A的

1、∵c=√3,a=2,∴b^2=a^2-c^2=1,∴椭圆方程为:x^2/4+y^2=1,2、设动点P(x0,y0),M(x,y),A(1,1/2),M是PA的中点,根据中点公式,x=(x0+1)/

如图,在平面直角坐标系xoy中

1.(-2,2)2.-1,0.53.1.5,-0.25

在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的

点(x,y)是曲线x²+y²=1上的点,(x',y')是C2上一点,则:x'=√3xy'=2y得:x=(1/√3)x'y=(1/2)y'因(x,y)在曲线x²+y

在直角坐标系xoy中,已知点p是反比例函数y=2根号3/x(x>0)图像上的一个动点,

分析:(1)四边形OKPA是正方形.当⊙P分别与两坐标轴相切时,PA⊥y轴,PK⊥x轴,x轴⊥y轴,且PA=PK,可判断结论;(2)①连接PB,设点P(x,),过点P作PG⊥BC于G,则半径PB=PC

一道数学难题 如图;已知正方形OABC在直角坐标系XOY中

(1)证明:∵四边形OABC为正方形,∴OC=OA.∵三角板OEF是等腰直角三角形,∴OE1=OF1.又三角板OEF绕O点逆时针旋转至OE1F1的位置时,∠AOE1=∠COF1,∴△OAE1≌△OCF

已知平面直角坐标系中xoy中的一个椭圆,它的中心在原点,椭圆上一动点到焦点的最长距离为2+根号3

解题思路:已知平面直角坐标系xoy中有一椭圆,它的中心在原点,且该椭圆上一动点到焦点的最长距离是2+根号3,最短距离是2-根号3.若椭圆的焦点在y轴上,直线l:y=2x+m截椭圆所得的弦的中点为M求M

已知平面直角坐标系xoy中o是坐标原点,A(6,2根号3)

B怎么来的啊.怎么感觉好像少了什么条件?你能不能看一看有没有漏了什么.

已知:如图,在平面直角坐标系xoy中直角三角形OCD的一边OC在

图呢,把图弄上来过A作AE⊥x轴于E,AF⊥CD于F,则AECF是矩形AE∥DC,A是OD的中点得E为OC的中点同理F为DC的中点有OE=1/2OCAE=CF=1/2DCA点坐标(3/2,2)反比例函

在平面直角坐标系xOy中,O为坐标原点

(1)cosa=5/6sina=根号11//6向量OP=(5/6,根号11//6)向量PA=(11/30,-根号11/6)向量PA*向量PO=(5/6)*(11/30)+(根号11/6)*(-根号11

在平面直角坐标系xOy中,已知反比例函数 满足:当x

7/3再问:请问仁兄,有没有过程,在下初三。再答:我也是的啦,不是填空题嘛过程:设点P坐标(x,y)则x^2+y^2=7xy=2kx+y=根号3k(因为y=-x+根号)所以(x+y)^2-2xy=7(

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,

OA=OD=AD/sqrt(2),D(0,2sqrt(2))如图,PED-PFA全等,PEOF为正方形,PO平分DOF当A接近O时,PE接近1/2AB,当A接近F时,PE接近PD,所有范围是1/2AD

在平面直角坐标系xoy中,

1、向量a的模可看作点Q到点(0,√3)的距离,向量b的模可以看作点Q到点(0,-√3)的距离;所以IaI+IbI=4可看作点Q到点(0,√3)和点(0,-√3)的距离之和为4,所以点Q的轨迹为以点点

"在直角坐标系xOy中"

直角坐标系xOy是指由x轴,y轴以及以它们的交点O为原点建立的坐标系.一般情况下,Ox是横轴,Oy是纵轴.

已知,在平面直角坐标系xOy中,A(-3,0),B(0.-5).

(1)直线y=-x+m斜率为-1,设其与AC,OB的交点分别为D,E;ADEO,BEDC均为直角梯形,面积相等,则AD=BEy=-x+m,取x=-3,D(-3,3+m)取x=0,E(0,m)AD=0-

如图所示 在平面直角坐标系xoy中,

(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x

已知:如图,在平面直角坐标系xOy中,

没图,我来试试.(1)A为(0,0),△ABC边长为2*sqr(3),BC∥x轴,则C应为(sqr(3),-3)(也可是(-sqr(3),-3),因为你没给图,我不知道B和C谁在左边,谁在右边,我姑且

在直角坐标系xoy中,已知中心在原点,离心率为1/2的椭圆E的一个焦点为圆C:x^2+y^2-4

(1)设M(x,y)则M到直线的距离为x+2,M到C2距离为根号(x-5)2+y2-3两式相等得出C1(2)得P(-4,y0),由点斜式设切线为Y-Y0=k(x+4),再由距离公式得出k与Y0的关系—