已知等腰直角三角形ABC中,角DAE=45

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:12:20
如图所示已知角1等于角2ae平行bc求证三角形abc是等腰直角三角形

因为ae平行bc,所以角2=角c,角1=角b,因为角1=角2,所以角b=角c,所以三角形abc是等腰三角形(等角对等边).

已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,角BAC=90°,且AB=AA1=2,

证明:取BB1中点M,则MD//AB,ME//AC,所以平面MDE//面ABC,所以DE//面ABC,得证,BB1⊥面ABC,易知BF⊥AF,根三垂线定理,知B1F⊥AF,BB1/FC=BF/CE=√

已知等腰直角三角形ABC中,∠ABC=90°,等腰直角三角形ECF=90°,连接AE、BF.求证:AE=BF

三角形ABC和ECF都是等腰直角三角形,则CA=CB,CE=CF,角ACE=角BCF根据边角边可以得出三角形ACE与BCF全等,所以AE=BF

已知:等腰直角三角形ABC和等腰直角三角形ADE中,∠B和∠D分别是直角,点E在AC上,连

两个垂直的BD=2MN;建立坐标,以B点为原点,BA为y轴,BC为x轴,假定BC=1,AD=X则可以写出坐标B(0,0),D(X,1),N是BD中点所以坐标N(X/2,1/2)M点(【1+X】/2,【

如图,已知等腰直角三角形ABC中,∠BAC=90°,∠ABC的平分线交AC于D

因为角ABD=角CBD=二分之一角ABC=22.5度角ADB=角ADC角BAD=角DCE=90度所以角ACE=角ABD=22.5所以角BCF=角BCA+角ACF=67.5所以角F=180-角ABC-角

如图,在等腰直角三角形ABC中,

证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH

已知ABC,CDE都是等腰直角三角形,求阴影部分面积

以C为圆心,BC为半径画圆,在圆中作一个最大的正方形.题中阴影部分面积=﹙圆面积-正方形面积﹚÷8=﹙3.14×6×6-12×12÷2﹚÷8=5.13cm²

已知D为等腰直角三角形ABC斜边BC上

①∠EDC=90°∠CAE+∠DAC=∠BAD+∠DAC=90°∴∠CAE=∠BAD在△AEC和△ADB中,AC=AB,AD=AE,∠CAE=∠BAD∴△AEC≌△ADB(边角边)∴∠ACE=∠B=4

已知等腰直角三角形ABC中,角A=90°,AB=AC,BE平分角ABC,求证BC=AB+AE,

如图:作EF ⊥BC,垂足为F,BF为∠ABC的角平分线,∠ABE=∠FBE ,∠BAE=∠BFE ,BE=BE故△BAE全等于△BFE所以AB=BF,AE=CF而△AB

已知等腰直角三角形ABC,∠BCA=90度

APC绕点C逆时针旋转90°,得△BCO,连结OP由于BC=AC,所以BC与AC重合,亦即点A落到点B处根据辅助线的作法可知△ACP≌△BCO∴∠BCO=∠ACP,∠BOC=∠APC,BO=PA=1,

已知在直角三角形ABC中,

1'点N在AB上.因为AB=8,BC=6,所以AM=5.根据三角形中线性质可知点N平分AB.即AN=4.得到三角形BMN的高为3,面积为3BN(中线长度我不会求,初三的学过了么?)2'点N在AC上.若

数学题 速度 大神 已知,如图,在三角形ABC中,角ACB=90度, AC=BC,等腰直角三角形

可以做再答:延长ef交ac于h连接gh.由于acb等腰直角efb等腰直角所以eb垂直bc又因为ef垂直ebac垂直bc所以ehcb是矩形由于eh垂直ac(矩形),角cab是45度,所以ahf是等腰直角

如图,在等腰直角三角形ABC中.

连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5

相似三角形 在等腰直角三角形ABC中,

证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A

已知直三棱柱ABC-A1B1C1中,三角行ABC为等腰直角三角形,角BAC=90度,且AB=AA1,D、E、F分别为B1

(1)证明:取BB1中点,记为G.连结DG、EG、DE,则DG//AB,EG//BC所以平面DGE//平面ABC因为DE在平面DGE上DE//平面ABC(2)设AB=AA1=1.则BC=B1C1=根号

abc是等腰直角三角形

连接BD∵∠EDF=∠BDC=90º∠EDB=∠CDF∵等腰直角三角形ABC∴BD=CD∠C=∠ABD∴⊿BDE≌⊿CDF∴CF=BE=5AE=BF=12根据勾股定理得EF=13

如图所示,已知在等腰直角三角形ABC中,角ACB=90°,D示斜边AB上任何一点

证明:因为∠ACB=90度,所以∠ACE+∠BCF=90度因为AE⊥CD所以∠ACE+∠CAE=90度所以∠CAE=∠BCF又因为AC=BC,∠CEA=∠CFB=90度所以△ACE≌△BCF(AAS)

在等腰直角三角形ABC中,

如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y

如图,在等腰直角三角形ABC中

反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD