1.1的n次方n无穷大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:09:27
用拉阿伯判别法,证明n(a[n+1]/a[n]-1)<-1,从而级数收敛
利用斯特林公式即可:n!√(2πn)(n/e)^n2^n/n-->∞(2^n)^n/n!(2^ne/n)^n/√(2πn)-->∞
学过洛必达法则吧,将nx^n写成n/x^(-n),注意这里n是变量,x是常量,分子分母都对n求导得1/-x^(-n)lnx,这里你就能看出来了,|x|∞,而lnx是常量,所以分母是∞,整个分数值为0
略去lim(n→∞):(1+1/n)^(n+m)=[(1+1/n)^n]·[(1+1/n)^m]=[(1+1/n)^n]·{[(1+1/n)^n]^(m/n)}=e·[e^(m/n)]=e
先考虑(ln(1/n)+ln(2/n)+...+ln(n/n))/n------>积分(从0到1)lnxdx=-1即ln((n!)^(1/n)/n)--->-1ln(n/(n!)^(1/n))----
对于任何q>1,n->+∞时,n/(q^n)=0;这个的意思是n->+∞时,指数函数比一次函数增长得要快,这是经常要用到的一个性质.打字很麻烦,关于这个的证明能不能麻烦你自己找一下,应该很容易找到.然
教你一个重要极限对于(1+1/n)^nn-->无穷时(1+1/n)^n=e^lim(1/n)*n也就是说lim(1+有关n的无穷小)^有关n的无穷大=e^lim(有关n的无穷小*有关n的无穷大)有li
怎么可能是1...1/(q^n)是1/n的高阶无穷小答案是0
我认为是0因为2^n/n!=(2/n)*(2/n-1)*(2/n-2)*(2/n-3)*.*2/2*2/1除了第一个分母是1以外,所有的分数分母都大于分子,且n趋近无穷,所以极限是0;2楼的说指数的递
1证明现在不会.通过电脑软件可以验证用Excel软件如图输入相关公式,即可看出极限为1.?v=1
不是趋于c,是趋于a,b,c中最大者设a,b,c中最大者为A,那么:A
谁给你出的这道题?真是脑筋缺根弦!只能证明当n趋向无穷大时,(1+1/n)的n次方存在极限,(具体证明过程在下面)而因为这个极限是个无理数,所以就用e来代替这个极限值,e=2.71828……,e是事后
当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于自然对数e,实际上e就是通过这个极限而发现的.它跟圆周率一样是个无限不循环小数.其值约等于2.718281828...详细内容请搜索:自然
原式=(x乘以sin(x/3的n次方))÷(x/3的n次方)=x.等号后面加上极限符号哦.
Stirling公式
y=n^(1/n)lny=lnn/n这是∞/∞,可以用洛比达法则分子求导=1/n分母求导=1所以=1/nn趋于∞所以lny极限=0所以y极限=e^0=1
在n趋于无穷大的时候,3^n趋于无穷大,那么x/3^n趋于0故原极限=lim(n趋于无穷大)x*sin(x/3^n)/(x/3^n)由重要极限可以知道,a趋于0时,sina/a趋于1所以在这里sin(