A,B均为n介的上三角矩阵,证明AB为上三角矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/07 16:42:15
定义一个N*N的矩阵,输出其对角线元素、上三角矩阵和下三角矩阵; 要考试 急

要用什么实现matlab有函数diagA=rand(3,3);B=diag(A);C=tril(A);D=triu(A)

刘老师,已知n阶矩阵A与上三角矩阵B=(bij)nxn相似,则A的特征值为?

相似矩阵有相同的特征值.所以A的特征值即B的特征值.又对角阵和上三角阵(或下三角阵)的特征值为对角元素.所以A的特征值为B的对角元素Bii

c语言数据结构 上三角矩阵相加相乘问题 设矩阵A B C均为采用压缩存储方式的n阶上三角矩阵,矩阵元素为整数类型,要求:

typedefintElemType;//定义矩阵元素类型ElemType为整型#include"stdlib.h"//该文件包含malloc()、realloc()和free()等函数#includ

证明两个n阶上三角矩阵的乘积

你把上三角矩阵的定义弄错了,----------主对角线下方元素全为零

设A,B为n阶矩阵,当A与B均为上三角阵时,(A+B)(A-B)=A^2-B^2不一定成立

(A+B)(A-B)=A^2-AB+BA-B^2注意矩阵乘法没有交换律.AB不一定等于BA,则BA-AB不一定等于0.所以(A+B)(A-B)=A^2-B^2不一定成立.

证明:n阶主对角元素为正数的上三角正交矩阵是单位矩阵

把n阶矩阵A看成是n个列向量,然后用施密特正交法正交化后,就能得出来

这个上三角全为1的n×n矩阵的逆是什么?

逆矩阵如下图,可用(A,E)作行初等变换方法求得.经济数学团队帮你解答,请及时采纳.再问:不明白,能给个过程吗再问:最简单的方法是什么再答:请你写出(A,E),第二行乘-1加到第一行,再第三行乘-1加

设A,B均为n阶矩阵,r(A)

(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)

任何n阶矩阵是一组三角矩阵(包括上三角矩阵和下三角矩阵)的乘积

前提是你得知道矩阵通过一系列(有限步)行初等变换可以转化到阶梯型,而对于方阵而言阶梯型一定是上三角阵,所以只要证明那一系列行变换都是三角矩阵就行了.第二类初等变换是对角阵,第三类初等变换是三角矩阵,唯

矩阵A可分解为正交阵*上三角矩阵,也可分解为另一个正交阵*下三角矩阵,请问这两个正交阵的关系是什么

这不是明摆着的吗A=SDA^{-1}=D^{-1}S^{-1}A^T=D^TS^TA^{-T}=S^{-T}D^{-T}=SD^{-T}D^{-T}是上三角阵,所以最后一个就是A^{-T}的QR分解另

设A,B均为n阶上三角形矩阵,试证AB亦为n阶上三角形矩阵

矩阵X=(xij)为n阶上三角形矩阵当且仅当当i>j时,矩阵的元素xij=0.设A=(aij),B=(bij)因为A,B均为n阶上三角形矩阵,故当i>j时,aij=0,bij=0令C=AB=(cij)

设A为一个n阶可逆矩阵,证明A可分解成一个正交矩阵Q与一个主对角线元素为正数的上三角矩阵T的乘积.

把n阶矩阵A看成是n个列向量,然后用施密特正交法正交化后,就能得出来

设A是一个n阶上三角矩阵,并且主对角线上的元素不为0,如何证明它的逆矩阵也是上三角形矩阵?

证:用伴随矩阵的方法由A可逆,A^-1=A*/|A|记A=(aij),A*=(Aij)^T其中Aij=(-1)^Mij是aij的代数余子式,Mij是aij是余子式.当ii.2.某行乘非零常数在这两类变

证明:A,B均为N阶正定矩阵,则A+B也为正定矩阵

设X为任意列向量X'(A+B)X=X'AX+X'BX>0所以A+B为正定矩阵

A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=

A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|

设U为所有n*n上三角矩阵,L为n*n下三角矩阵,如何证明U⊕L=R^n*n?

按照你这个定义,是所有半角阵去掉对角矩阵,这显然不可能是R^n*n题目有问题

证明.若A是主对角元全为零的上三角矩阵,则A^2也是主对角元全为零的上三角矩阵

定义证明,定义证明再问:不会,其实书上的例题证明我就没看明白再答:就是罗列每个矩阵的每个元素,然后按照矩阵乘法做运算,看下结果是否相符。

设A是实数域上n级可逆矩阵,证明:A可唯一分解成A=TB.其中T是正交阵,B是主对角元都为正的上三角矩阵.

考虑到R^n的任何一组基可以标准正交化即可得到存在性(考虑两组基的过渡阵).唯一性是显然的,证明如下:设T_1B_1=T_2B_2,则{T_2}^{-1}T_1=B_2{B_1}^{-1}.注意到1.

一个复矩阵A可逆,证其可分解为一个酋矩阵与上三角矩阵的乘积,并且该分解唯一

分解的存在性直接用Gram-Schmidt正交化过程证明即可但不可能保证分解唯一,如果A=QR,那么A=(-Q)(-R)一般来讲要一个额外的条件来保证唯一性,常用的条件是R的对角元为正实数,这样就和G