A,B是正定矩阵det(A B)>det(A)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:30:55
正定则顺序主子式都大于0所以|A|≠0,|B|≠0所以|AB|=|A||B|≠0所以AB可逆所以(C)正确.再问:这样呀,那其它答案为什么不正确,或者为什么不能确定呢?
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(
因为A正定,所以存在可逆阵C,使得A=C^TC而AB=C^TCB=C^T(CBC^(-1))C所以AB与CBC^-1合同.所以有AB正定CBC^-1正定CBC^-1的特征值都大于0B的特征值都大于0
A为n阶实正定对称矩阵,==>A=PP^T(存在P可逆)B为n阶反实对称矩阵==》P^{-1}BP^{-1}^T为n阶反实对称矩阵,==》P^{-1}BP^{-1}^T的特征值都是实部为0的复数,==
可以AB合同的充要条件是其二次型有相同的标准型,即有相同的正,负惯性指数,故A正定,B也正定
转置符号用'代替说明首先,第一步(A+B)’=A‘+B’=A+B所以A+B是对称矩阵其次,任取x≠0根据正定定义x‘Ax>0.x‘Bx>0.于是x’(A+B)x=x‘Ax+x‘Bx>0所以A+B是正定
首先,由A正定,存在正定矩阵C使A=C².这个用可对角化证明:由A为实对称阵,存在正交阵T使T^(-1)AT为对角阵.又A正定,故T^(-1)AT的对角线上均为正数(特征值>0).故存在对角
因为A,B都是正定矩阵所以对任意n维列向量x≠0,x'Ax>0,x'Bx>0所以x'(A+B)x=x'Ax+x'Bx>0所以A+B是正定矩阵.注:x'=x^T
B因为A,B均为正定矩阵所以对于任意的XX'AX>0X'BX>0所以X'(A+B)X=X'AX+X'BX>0根据X任意性(A+B)是正定的
首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定
再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。
答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A
先证AB为对称矩阵.这题应该缺少A,B可交换这一条件,否则AB为对称矩阵这一条件也无法满足.再证AB的特征值全为正.因为A,B为正定矩阵,所以对于矩阵A,B可以找到共同的正交矩阵T,使得T'AT=di
A,B是对称的,可交换的故他们可同时对角化.且AB可与其同时对角化.A,B是半正定的,对角化后对角线上的结果是非负的.故AB对角化后的结果对角线上非负.故AB是半正定的.另外对称是显然的.再问:为什么
实对称矩阵A,B,分别存在实对称正定矩阵C,D,使得A=C^2,B=D^2则有C'(AB)C=C^-1(CCDD)C=CDDC=C'D'DC=(DC)'DC=E'EE=DC可逆,所以C'(AB)C正定
这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.
这个证明很容易,AB为n阶实对称阵,均可对角化.设A的特征值为λ1,λ2,λ3.λn,其中λi均>0(A是正交矩阵,特征值均大于0)另设B的特征值为λ1‘,λ2’,λ3‘.λn’tA+B的特征值φ(λ
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值