平行四边形abcd外一点e,ae垂直de,be垂直ce,求abcd为矩形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:58:33
图你自己画吧因为 PM=1/3PC所以 (AM)=2/3(AP)+1/3(AC) 【(AM)表示向量AM ,这个式子看不明白为啥看最后面
如图,连接OE,∵EA⊥EC,ED⊥BE,∴△AEC和△DEB是直角三角形,∵O为平行四边形的对角线的交点,∴O为AC和BD的中点,∴OE=12AC=12BD,∴AC=BD,∴平行四边形ABCD为矩形
平行四边形ABCD不一定是矩形例如按下面的方法作图就是一个例子:1、作一个平行四边形ABCD,使∠A>90度2、作直线FC⊥AB3、以BD为直径作圆,交直线FC于E则E一定在平行四边形ABCD外部,且
连接AC,BD交于O,连接OE因为四边形ABCD为平行四边形所以O分别为BD,AC的中点因为AE垂直于CE所以三角形ACE为RT三角形所以OE=1/2AC同理在三角形BDE中OE=1/2BD所以AC=
肯定能.最起码P为平行四边形的中心点时就是,证明的话你设EP为x,BC为m,BC至AD的距离为H1/2x*h+1/2(m-x)(H-h)=1/2x(H-h)+1/2(m-x)h(m-x)(H-h-h)
证明:连接BD、AC交点为O因为ABCD为平行四边形∴O为对角线AC、BD的中点在RT△AEC中,O为斜边AC的中点∴OE=OA=OC(直角三角形斜边的中线=斜边一半)同理在RT△BED中∴OE=OD
因为平行四边形,得到O为AC,BD中点.因为RtAEC,则EO=AO=CO,同理,EO=DO=BO,可得AO=BO=CO=DO,所以为矩形.
证明:连接AC,BD交于O,连接EO∵四边形ABCD为平行四边形∴AC与BD互相平分∵AE⊥CE∴EO为Rt⊿EAC的斜边中线∴EO=½AC∵BE⊥DE∴EO为Rt⊿EBD的斜边中线∴EO=
因为平行四边形,得到O为AC,BD中点.因为RtAEC,则EO=AO=CO,同理,EO=DO=BO,可得AO=BO=CO=DO,所以为矩形.
证明:连接AC、BD交于点O,连接OE,∵AE⊥CE,BE⊥DE,∴OE=12AC=12BD,∴AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD为矩形.
做一条辅助线,连接EO因为∠AED=90°,因为平行四边形ABCD所以O平分AC,BD所以EO,既是△AEC又是△BED的中线又因为,∠AEC=∠BED=90°所以EO=AO=OCEO=OD=BO即,
证明:如图,定律:平行四边形的对角线互相平分.以AC为直径、点O为圆心作圆,则点A、C位于圆上,同时点E也在圆上,因为AE垂直CE(圆上一点与圆的直径必然形成直角三角形,圆外或圆内的任何一点都不可能形
是矩形连结ac和bd,设ac与bd交点为o连结eo线段eo分别是直角三角形aec和直角三角形bed的斜边中线即:两直角三角形的斜边中线相等所以两直角三角形的斜边长度相等即:ac=bd因为abcd是平行
做一条辅助线,连接EO因为∠AED=90°,因为平行四边形ABCD所以O平分AC,BD所以EO,既是△AEC又是△BED的中线又因为,∠AEC=∠BED=90°所以EO=AO=OCEO=OD=BO即,
证明:设平行四边形ABCD的两对角线AC与BD相交于点O,连接OE∵四边形ABCD是平行四边形∴点O是AC、BD的中点,∵AE⊥EC,BE⊥DE,∴OE=1/2AC,OE=1/2BD(OE即是直角三角
证明:连接EO在平行四边形ABCD中,AO=CO,BO=DO所以,在直角三角形BED中,EO=BO=DO在直角三角形ACE中,EO=AO=CO所以,AO=CO=BO=DO又因为四边形ABCD为平行四边
证明:因为四边形ABCD是平形四边形所以AD=BC,AD平行BC,且角EDC=角ECD又因为ED=EC,EA=EB所以三角形EAD全等于三角形EBC角EDA=角ECB角EDA=角EDC+角CDA角EC
证明:连结AC.BD,交点为O,连结EO因为AE⊥EC,所以:在Rt△AEC中,由AO=OC可得:EO=AC/2因为BE⊥ED,所以:在Rt△BED中,由BO=OD可得:EO=BD/2则AC/2=BD
∵四边形ABCD为平行四边形∴OD=OB,OA=OC又∵在RT△BED中,O为斜边BD的中点∴OE=1/2BD(直角三角形斜边的中线=斜边一半)∴BD=2OE同理可得:AC=2OE∴AC=BD∴平行四
证明:连接AC,BD交于O,连接EO∵四边形ABCD为平行四边形∴AC与BD互相平分∵AE⊥CE∴EO为Rt⊿EAC的斜边中线∴EO=½AC∵BE⊥DE∴EO为Rt⊿EBD的斜边中线∴EO=