作业帮 > 数学 > 作业

如图,E为平行四边形ABCD外一点,O为对角线交点,AE⊥CE,BE⊥DE,求证:四边形ABCD为矩形

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 12:22:00
如图,E为平行四边形ABCD外一点,O为对角线交点,AE⊥CE,BE⊥DE,求证:四边形ABCD为矩形
∵四边形ABCD为平行四边形
∴OD=OB,OA=OC
又∵在RT△BED中,O为斜边BD的中点
∴OE=1/2BD(直角三角形斜边的中线=斜边一半)
∴BD=2OE
同理可得:AC=2OE
∴AC=BD
∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形)
这里是【奥数志趣馆】团队为您解答,不懂可以继续提问,