a1=9,an=an-1的平方-a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:49:32
在等比数列{an}中,若a1+a2+a3+...+an=2的n-1次方,则a1平方+a2平方+a3平方+...an平

a1=2^(1-1)=1a2=2^(2-1)-1=1a3=2a4=4公比为2a1^2,2^2,.,.an^2公比为4a1平方+a2平方+a3平方+...an平方=1*(1-4^n)/(1-4)=(4^

已知数列{an}满足a1=1/2,an+1=an+1/n的平方+n求an

an+1=an+1/n的平方+nan+1-an=1/n^2+nan+1-an=1/n(n+1)an+1-an=(1/n)-1/(n+1)an-an-1=(1/n-1)-1/nan-1-an-2=(1/

设数列{An}的各项都是正数,且A1=1,(An)+1/(An+1)+1=(An+1)/2An,Bn=An平方+An.

⑴∵(An)+1/(An+1)+1=(An+1)/2An,交叉相乘∴2(An²+An)=A²(n+1)+A(n+1)∵Bn=An²+An,A1=1,∴B1=2∴B(n+1

在数列an中a1=1 an=2倍的(an-1)平方 求通项公式

a1=1带入an=2倍的(an-1)平方得a2=0a3=2a4=2---an=2通项an=2n>2再问:若a1=2an=3倍的(an-1)的平方呢再答:这个真不会

数列{an}中,a1=1,当n>=2时,Sn=n2an (n的平方*an),求通项an.a1=1不是=1/2.

n≥2时,Sn=n²anSn-1=(n-1)²a(n-1)Sn-Sn-1=an=n²an-(n-1)²a(n-1)n²an-an=(n-1)²

已知数列{an}的前N项和Sn与an之间满足a1=1,Sn=n的平方*an,求{an}

解由Sn=n的平方*an,得S(n-1)=(n-1)^2*a(n-1)∴Sn-S(n-1)=n^2an-(n-1)^2a(n-1)an=n^2an-(n-1)^2a(n-1)因此an/a(n-1)=(

已知数列an满足a1=1\2 an+1=an+1\4n平方-1 则an

a1=1/2a(n+1)=an+1/(4n²-1)=an+(1/2)[1/(2n-1)-1/(2n+1)]2a(n+1)=2an+1/(2n-1)-1/(2n+1)2a(n+1)+1/(2(

等比数列{an}中,a1+a2+a3+...+an=2的N次方减1,则a1的平方+a2的平方+a3的平方+...+an的

由题意Sn=2^n-1S(n-1)=2^(n-1)-1An=Sn-S(n-1)=2^(n-1)Bn=An^2=(2^(n-1))^2=4^(n-1)Bn仍旧为等比数列,B1=1,q=4其和为Tn=B1

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

在数列an中,已知a1=1,Sn=n的平方*an,求通项公式an

an=Sn-Sn-1=>an=n^2*an-(n-1)^2*an-1an/an-1=(n-1)/n+1)所以an-1/an-2=(n-2)/n)an-2/an-3=(n-3)/n-1)an-3/an-

正项数列{an},a1等于1,an的平方=4an,求an的通项公式

明显题目有问题,an的平方=4an,那这个数列是常数数列,这里给出的条件应该是一个递推公式,就比如说a(n-1)的平方=4an高中的题目,特别是高考极少有求一个常数数列的.除非是普通练习两边取自然对数

数列an满足a1=2,an+1=4an+9,则an=?

a(n+1)=4an+9(n+1)表示下标a(n+1)+3=4(an+3)[a(n+1)+3]/(an+3)=4所以数列{an+3}是以a1+3=5为首相q=4为公比的等比数列an+3=5*(4)^(

A1=9,3An+1=An,求通项公式

3A(n+1)=An(n+1)是下标A(n+1)/An=1/3所{An}是以A1=9,q=1/3的等比数列An=9*(1/3)^(n-1)=(3^2)*3^(1-n)=3^(3-n)

数列{An}中,A1=1,An大于0,(n+1)*An+1的平方-n*An的平方+An+1*An=0,(n属于N*)求A

(n+1)*(A[n+1])^2-n*(A[n])2+(A[n+1])*A[n]=n((A[n+1])^2-(A[n])^2)+((A[n+1])^2+A[n+1]*A[n])=n(A[n+1]+A[

a1=1/2,an+1=an/an+2,求n/an的sn

a[n+1]=a[n]/(a[n]+2)是不是这样子?那么两边同时取倒数.1/a[n+1]=[an+2]/an=1+2/an1/a[n+1]+1==2+2/an=2{1/an+1}所以形如1/an+1

已知数列满足a1=1,1/an+1=根号下1/an的平方+2,an>0,求an?

1/(an的平方)是个等差数列,公差为2.所以可求得an=1/(根号下2n-1).

已知数列an满足a1=1,an+1=2(1 1/n)的平方an

/>a(n+1)=2(1+1/n)²an=2[(n+1)/n]²an=2an(n+1)²/n²[a(n+1)²/(n+1)²]/(an/n&