a2 b2=16 令a=4cosx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:46:24
f(x)=2sinxcosx+cos2x=sin2x+cos2x=√2sin(2x+π/4)⑴f(π/4)=1⑵2x+π/4∈〔-3π/4,5π/4〕且2x+π/4∈〔-π/2+2kπ,π/2+2kπ
f(x)=a.b=2cosxsinx+cos2x=sin2x+cos2xf(pi/4)=sin(pi/2)+cos(pi/2)=1+0=1楼上的方法正确,最后一步计算错了~
(1)f(x)=a*b+1=2sin²x+2sinxcosx+1=1-cos2x+sin2x+1=√2sin(2x-π/4)+2所以函数f(x)的最小正周期是T=2π/2=π(2)x∈[0,
a+b=4两边平方a²+2ab+b²=162ab=16-(a²+b²)=12ab=6所以a²b²=(ab)²=36(a-b)
a=b=1或者a=b=-1
a²+b²+a²b²+1=4aba²-2ab+b²+a²b²-2ab+1=0(a-b)²+(ab-1)&sup
根据向量运算法则f(x)=2cosx/2*根号2sin(π/4+x/2)+cos^2x+tan^2x*cos^2x=2*根号2*sin(π/4+x/2)*cosx/2+cos^2x+sin^2x=2*
1.f(x)=a•b=(2cos(x/2),1)•(√2sin(x/2+π/4),-1)=2√2cos(x/2)sin(x/2+π/4)-1=2√2*(1/2)*{sin[(x
√2sin(x+π/4)=sinx+cosxf(x)=2sinxcosx+2cosx-1=sin2x+cos2x=√2sin(2x+π/4)x∈(0,π/2),π/4
f(x)=向量a.向量b.=√3sinx/2cosx/2+cos^2(x/2).=(√3/2)sinx+(1/2)cosx+1/2.∴f(x)=sin(x+π/6)+1/2.f'(x)=cos(x+π
a2b2+a2+b2+1=4ab变形得:a2b2-2ab+1+a2+b2-2ab=(ab-1)2+(a-b)2=0,∴ab-1=0,a-b=0,解得:a=1,b=1,或a=-1,b=-1.故答案为:1
原式=b2-2ab+4a2-b2=2a(2a-b),当a=2,b=1时,原式=2×2×(2×2-1)=12.
原式=ab(a+3ab+b),=ab(a+b+3ab).∵a+b=6,ab=4,∴原式=4×(6+3×4)=72.
原式=ab(a2+2ab+b2)=ab(a+b)2,当ab=2,a+b=5时,原式=2×25=50.
∵a2+b2+a2b2=4ab-1,∴a2-2ab+b2+a2b2-2ab+1=0,∴(a-b)2+(ab-1)2=0,∴a-b=0,ab-1=0,解得a=1,b=1或a=b=-1,∴a+b=2或-2
(1)m?n=cos2x/2+sinx/2cosx/2=1+cosx/2+1/2sinx.∴f(x)=a(sinx+cosx)+a+b=2asin(x+π/4)+a+b.当a=1时,f(x)=2sin
a2b2+a2+b2+1-4ab=0a2b2-2ab+1+a2+b2-2ab=0(ab-1)2+(a-b)2=0==>a=b且ab=1==>a=1,b=1或a=-1,b=-1满意记得采纳答题不容易~记
由a+b=4得:(a+b)²=4²a²+2ab+b²=16再由a²+b²=1414+2ab=162ab=16-14=2得ab=1则:(ab)
1)f(x)=a·b=sin2x+cos2x=(根号2)sin(2x+π/4);x∈[-π/2,π/2],3π/4