广义积分的敛散性∫4^(-3x^2)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:47:38
求广义积分∫(3,+∞)1/[(x-1)^4*√(x²-2x)]dx

∫dx/[(x-1)^4*√(x^2-2x)=∫d(x-1)/[(x-1)^4*√((x-1)^2-1)](x-1)=secusinu^2=1-1/(x-1)^2=(x^2-2x)/(x-1)^2si

关于广义积分的问题!广义积分∫x^3e^(-x)dx积分上限为:正无穷积分下限为:0怎么解出的答案.

用分步积分法,先把e^(-x)放到微分符号后面,然后使用分部积分公式:原式=-∫x^3de^(-x)=∫e^(-x)d(x^3)-(x^3)e^(-x)(一定要写上下限)注意上式中的后面一项在正无穷大

判断广义积分的敛散性;dx/(x^2-4x+3) (x从0到2),

∫[0→2]1/(x²-4x+3)dx=∫[0→2]1/[(x-1)(x-3)]dx=∫[0→1]1/[(x-1)(x-3)]dx+∫[1→2]1/[(x-1)(x-3)]dx积分收敛的充分

广义积分∫ [1/(x^2+4x+5)]dx = .

∫[1/(x²+4x+5)]dx=∫1/[(x+2)²+1]d(x+2)+∫1/[(x+2)²+1]d(x+2)=arctan(x+2)|+arctan(x+2)|=π/

求下列广义积分的敛散性∫上限是正无穷,下限是0(xe的-x次方dx)

∫xe^(-x)dx=lim∫xe^(-x)dx=lim[-xe^(-x)-e^(-x)]|=lim[-ue^(-u)-e^(-u)+1]=lim[-u/e^u-1/e^u]+1=1收敛

判别广义积分∫(上e 下1/e) ln|x-1|/(x-1) dx的敛散性

这个积分应该是收敛的;∫{x=1/e→e}[ln|x-1|/(x-1)]dx=∫{x=1/e→1-δ}[ln(1-x)/(x-1)]dx+∫{x=1-δ→e}[ln(x-1)/(x-1)]dx……δ→

讨论广义积分∫【+∞,1】dx/x^p的敛散性.

∫【+∞,1】dx/x^p=x^1-p/1-p=lim(x->+∞)x^(1-p)/(1-p)-1/(1-p)=0-1/(1-p)=-1/(1-p)

判断下列广义积分的敛散性∫x^3e^(-x^2)dx,[0,∞]

直接算.=1/2∫(0,+∞)x^2e^(-x^2)dx^2=1/2∫(0,+∞)te^(-t)dt=1/2∫(0,+∞)e^(-t)dt=1/2

广义积分的敛散性,∫(正无穷,0)sinxdx

发散.因为sinx是周期函数,值不确定.

讨论广义积分∫【1,0】dx/x^q的敛散性.

∫【1,0】dx/x^q=【1,0】x^(1-q)/(1-q)=1/(1-q)-lin(x->0+)x^(1-q)/(1-q)=1/(1-q)+lin(x->0+)(1/x)^(q-1)/(q-1)=

求广义积分的值,和敛散性 ∫ e^(2x) dx

=(-1/2)∫e^(-2x)d(-2x)=(-1/2)e^(-2x)|=(-1/2)[0-e^(-2)]=1/(2e²)

P185 判断广义积分的敛散性,若收敛计算其值 1 .∫[0,+∞](e^-x)sinxdx

∫[0,+∞](e^-x)sinxdx=∫[0,+∞]-sinxde^(-x)=-sinxe^(-x)|+∫[0,+∞]e^(-x)dsinx=∫[0,+∞]e^(-x)cosxdx=∫[0,+∞]-

判断广义积分的敛散性,:∫(0,负无穷)e^(2x)dx

∫(-∞,0]e^(2x)dx=1/2e^(2x)(-∞,0]=1/2

判别广义积分∫从1到3 dx/lnx 的敛散性

积分下限X=1为被积函数的无穷间断点,由罗比达法则知LIM(X-->1+0)(X-1)(1/Lnx)=LIM(X-->1+0)(1/(1/X))=1>0,所以该广义积分发散

讨论广义积分∫(1,2) dx/(xlnx)的敛散性

那个原函数可以求出来啊,是ln(lnx)+C由此可知此积分发散再问:求原函数的过程可以写出来吗?再答:∫dx/(xlnx)=∫d(lnx)/lnx=ln(lnx)+C再问:请问∫dx/(xlnx)=∫

求下面广义积分的敛散性

再答:满意请采纳,谢谢再问:图片点不开怎么回事再答:

一道广义积分题.研究下列积分的敛散性

要知道积分(从1到无穷)sinx/x^pdx在p>0时收敛(用Dirichlet判别法),p1时,sin(a+x)的部分积分有界,x/(1+x^a)是递减趋于0的函数,Dirichlet判别法知道收敛

讨论广义积分∫(-1,1)1/x²dx的敛散性

∫(-1,1)1/x²dx=∫(-1,0)1/x²dx+∫(0,1)1/x²dx因为积分∫(-1,0)1/x²dx=(-1/x)|(-1,0)=-∞故原积分发散