广义积分的敛散性∫4^(-3x^2)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:47:38
∫dx/[(x-1)^4*√(x^2-2x)=∫d(x-1)/[(x-1)^4*√((x-1)^2-1)](x-1)=secusinu^2=1-1/(x-1)^2=(x^2-2x)/(x-1)^2si
用分步积分法,先把e^(-x)放到微分符号后面,然后使用分部积分公式:原式=-∫x^3de^(-x)=∫e^(-x)d(x^3)-(x^3)e^(-x)(一定要写上下限)注意上式中的后面一项在正无穷大
∫[0→2]1/(x²-4x+3)dx=∫[0→2]1/[(x-1)(x-3)]dx=∫[0→1]1/[(x-1)(x-3)]dx+∫[1→2]1/[(x-1)(x-3)]dx积分收敛的充分
∫[1/(x²+4x+5)]dx=∫1/[(x+2)²+1]d(x+2)+∫1/[(x+2)²+1]d(x+2)=arctan(x+2)|+arctan(x+2)|=π/
∫xe^(-x)dx=lim∫xe^(-x)dx=lim[-xe^(-x)-e^(-x)]|=lim[-ue^(-u)-e^(-u)+1]=lim[-u/e^u-1/e^u]+1=1收敛
这个积分应该是收敛的;∫{x=1/e→e}[ln|x-1|/(x-1)]dx=∫{x=1/e→1-δ}[ln(1-x)/(x-1)]dx+∫{x=1-δ→e}[ln(x-1)/(x-1)]dx……δ→
∫【+∞,1】dx/x^p=x^1-p/1-p=lim(x->+∞)x^(1-p)/(1-p)-1/(1-p)=0-1/(1-p)=-1/(1-p)
直接算.=1/2∫(0,+∞)x^2e^(-x^2)dx^2=1/2∫(0,+∞)te^(-t)dt=1/2∫(0,+∞)e^(-t)dt=1/2
发散.因为sinx是周期函数,值不确定.
∫【1,0】dx/x^q=【1,0】x^(1-q)/(1-q)=1/(1-q)-lin(x->0+)x^(1-q)/(1-q)=1/(1-q)+lin(x->0+)(1/x)^(q-1)/(q-1)=
=(-1/2)∫e^(-2x)d(-2x)=(-1/2)e^(-2x)|=(-1/2)[0-e^(-2)]=1/(2e²)
∫[0,+∞](e^-x)sinxdx=∫[0,+∞]-sinxde^(-x)=-sinxe^(-x)|+∫[0,+∞]e^(-x)dsinx=∫[0,+∞]e^(-x)cosxdx=∫[0,+∞]-
∫(-∞,0]e^(2x)dx=1/2e^(2x)(-∞,0]=1/2
不知道呀.
积分下限X=1为被积函数的无穷间断点,由罗比达法则知LIM(X-->1+0)(X-1)(1/Lnx)=LIM(X-->1+0)(1/(1/X))=1>0,所以该广义积分发散
那个原函数可以求出来啊,是ln(lnx)+C由此可知此积分发散再问:求原函数的过程可以写出来吗?再答:∫dx/(xlnx)=∫d(lnx)/lnx=ln(lnx)+C再问:请问∫dx/(xlnx)=∫
再答:满意请采纳,谢谢再问:图片点不开怎么回事再答:
要知道积分(从1到无穷)sinx/x^pdx在p>0时收敛(用Dirichlet判别法),p1时,sin(a+x)的部分积分有界,x/(1+x^a)是递减趋于0的函数,Dirichlet判别法知道收敛
∫(-1,1)1/x²dx=∫(-1,0)1/x²dx+∫(0,1)1/x²dx因为积分∫(-1,0)1/x²dx=(-1/x)|(-1,0)=-∞故原积分发散