当x0=-1时,求函数f(x)=1 x的带有拉格朗日型余项的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:24:32
已知函数f(x)的定义域为R,且f(a+b)=f(a)*f(b)当x>0时,f(x)>1.①求f(0),②证明f(x0为

1、令a>0,b=0,则有f(a)=f(a)*f(0),因为f(a)>1故而f(0)=12、假设a>b>0,f(a)=f(b+(a/b-1))=f(b)*f(a/b-1),因为a>b>0所以a/b-1

求函数f(x)=-1 x0在x=0处的左右极限并说明当x→0时极限是否存在

x趋于0时左极限f(0-0)=-1,右极限f(0+0)=1,左右极限不相等,故x趋于0时极限不存在.而函数值f(0)=0,故x=0为函数的跳跃间断点.

设函数f(x)在x0处可导,则(f²(x)-f²(x0)/(x-x0)当x→x0时的极限

lim(f²(x)-f²(x0)/(x-x0)因式分解为:=lim(f(x)+f(x0))(f(x)-f(x0))/(x-x0)拆成两项=lim[(f(x)+f(x0)]*lim[

f(x)在x0处可导,且f'(x0)=2,则当x无限趋近于0时,[f(x0+x)-f(x0-3x)]/x=

[f(x0+x)-f(x0-3x)]/x=f(x0+x)/x-f(x0-3x)/x=f(x0+x)/x+3*f(x0-3x)/(-3x)=2+3*2=8主要是把方程给化简,需要仔细看书里极限的定义就很

如果函数f(x),当x→x0时极限为A,证明lim(x→x0)│f(x)│=│A│;并举例说明:如果当x→x0时│f(x

1.引理||a|-|b||≤|a±b|≤|a|+|b|||f(x)|-|A||≤|f(x)-A|因为函数f(x),当x→x0时极限为A,所以对任给的ε>0,必存在δ0>0,使得当|x-x0|

已知函数f(x)为R上的奇函数,当x>0时,f(x)=log2(1+x),求解关于x0的不等式f(x0)

楼上结果正确,但开始有点问题已知函数f(x)为R上的奇函数,当x>0时,f(x)=log2(1+x),求解关于x0的不等式f(x0)0时,f(x)=log(2,1+x),∴当x再问:好像你的那个log

设函数fx为奇函数且对任意xy属于R都有fx-fy=f (x-y)当x0 f(1)=-5,求f(x)

1)证明:令x=0;可得-f(y)=f(-y)所以为奇函数;2)证明:设x4所以-5x+1113/5

已知函数y=f(x)在x=x0处有连续导数,则x->x0时[f(x0-x)-f(x0+x)]/x的极限?

lim[f(x0-x)-f(x0+x)]/x(x->x0)=-2lim[f(x0+x)-f(x0-x)]/[(x0+x)-(x0-x)](x->x0)=-2f'(x0)

设函数f(x)=[xsin1/x+b,x0(1)当a,b为何值时,f(x)在x=0出有极限存在?

f(x)在x=0出有极限存在,那么lim(x→0-)=lim(x→0+)又lim(x→0+)f(x)=lim(x→0+)sinx/x=1lim(x→0-)f(x)=lim(x→0+)xsin1/x+b

函数f(x)对任意x,yR都有f(x+y)=f(x)+f(y)-1,并且当x0时,f(x)1.证明函数在R上时增函数

对于任意的x2>x1,其中x1、x2属于R,设x2=x1+Δx,很显然,Δx>0根据题意f(Δx)>1f(x2)-f(x1)=f(x1+Δx)-f(x1)=f(Δx)-1>0故而f(x)在R上是增函数

高一函数题函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+1,则当x0时,f(x)=-x+1,则当x

令x0,所以:f(-x)=-(-x)+1=x+1;因为f(x)是奇函数,所以:f(x)=-f(-x)=-x-1;

已知f(x)=1/x,f(x0)=5,求f[f'(x0)]的值

f(x)=1/xf(x0)=1/x0=5∴x0=1/5f(x)=1/x=x^(-1)∴f'(x)=-x^(-2)∴f'(x0)=f'(1/5)=-(1/5)^(-2)=-25∴f[f'(x0)]=f(

高的数学导数的应用1.设函数f(x)在x0处可导,且f'(x0)=2,则当@x=x-x0趋近0时,f(x)在x0处的微分

我会第二题.f(x)为偶函数,x0时,f(x)增,则f'(x)>0.因为f(x)只是先减后增,并没有过多的弯曲,所以一阶导的图像是一条递增的且通过X轴的线(不管曲直啊),二阶导是一阶导的导函数,所以二

讨论下列函数当x=0时的连续性和可导性 f(x)=x^2*sin(1/x) x0 f(x)=0 x=0

根据题意,当x≠0的时候:f(x)=x^2sin(1/x)因为sin(1/x)是正弦函数,为有界函数,所以不影响函数的极限,即当x趋近于0的时候,此时极限=0^2=0,与在x=0处的函数值相等,故函数

已知函数f(x)=lnx+x(x>0)点P(1,f(1)),Q(x0,f(x0)),当x0>1时,直线PQ的斜率恒小于m

f'(x)=1/x+1x0>1时,直线PQ的斜率恒小于m即x>1时f'(x)恒10

若函数 y=f(x)满足f′(x0)=1/2,则当 Δx→0时,dylx=x0是( )

dy=f'(x0)△x所以dy/△x=f'(x0)即B.与△x同阶的无穷小再问:dy/△x=f'(x0)为什么就得到答案了?再答:dy/△x=f'(x0)左边两个无穷小的比的极限=右边=1/2根据无穷

设函数.F(x)={x-1,x0.当x→0时,求F(x)的极限

x→0+时limF(x)=limx+1=1x→0-时limF(x)=limx-1=-1所以两个极限不同x→0时F(x)极限不存在很高兴为您解答,【数学好玩】团队为您答题.请点击下面的【选为满意回答】按

设函数f(x)为奇函数,且对任意x,y∈R都有f(x)-f(y)=f(x-y),当x0,f(1)=-5,求f(x)在[-

因为f(x)为奇函数,所以f(-x)=-f(x)f(x)>0(xf(x)0)因此f(x)在【-2,2】的最大值必在【-2,0】间假设x>y,则x-y>0则f(x)-f(y)=f(x-y)f(x)f(x

设函数f(x)为奇函数,且对任意x y属于R都有f(x)-f(y)=f(x-y),当x0,f(1)=-5,求f(x)在[

f(x)-f(y)=f(x-y)则f(x)-f(x-y)=f(y)当y0即:f(x)-f(x-y)>0而x