作业帮 > 数学 > 作业

已知函数f(x)的定义域为R,且f(a+b)=f(a)*f(b)当x>0时,f(x)>1.①求f(0),②证明f(x0为

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 06:12:58
已知函数f(x)的定义域为R,且f(a+b)=f(a)*f(b)当x>0时,f(x)>1.①求f(0),②证明f(x0为增函数.
1 、令 a>0 ,b=0 ,则有 f(a)=f(a)*f(0) ,因为 f(a)>1 故而 f(0)=1
2、假设a>b>0 ,f(a)=f(b+(a/b-1))=f(b)*f(a/b-1) ,因为 a>b>0 所以 a/b-1>0
进而有 f(a/b-1)>1 ,于是有 f(a)=f(b)*f(a/b-1)>f(b) 显然可知 f(x)为增函数.