当点G为CD的中点时,求证:FC=FE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:32:45
证明:连接OE,OG,DE∵CD是△ABC的边AB上的高∴∠BDC=∠ADC=90°∵点G是AD的中点∴AG=GD又∵OC=OD∴OG是△ACD的中位线∴OG=1/2AC∵CD是⊙O的直径∴∠AED=
证明:因为:F为CD中点,G为AC中点,所以:FG//AD且FG=1/2AD.因为:E为AB中点,G为AC中点,所以:EG//BC且EG=1/2BC.因为:AD=BC所以:FG=EG在三角形EFG中,
因为E、F、G分别是BC、BD、BA的中点,所以GF,GE是中位线,所以GF=1/2AD,GE=1/2AC,而AC=AD,所以GF=GE,又因为H是EF的中点,所以GH⊥EF(等腰三角形三线合一)
1.EF是△ABC的中位线∴EF∥AC在△ACD中:∵AH:HD=2:1=CG:GD∴GH∥AC∴EF∥GH∴E、F、G、H四点共面2.设EH∩FG=P则P∈EH,且P∈FG∵EH∈平面ABD∴P∈平
证明:连接AC,延长CD交圆O于M.CD垂直AB,则:弧AM=弧AC=弧CE,∠ACM=∠CAE;又AB为直径,∠ACB=90度.故:∠FCG=∠FGC(等角的余角相等)所以,CF=GF.
证明:(证法一)连接OE,DE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=12AD=DG,∴∠1=∠2;∵OE=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4,∴∠OE
连接AC,BD∵E,H,F,G是中点∴EH是△DAC的中位线∴EH//AC同理GF//AC∴GF//EH同理EF//HG∴四边形EHGF是平行四边形
依题意可知GE=GFBG+GE=BFBF²=BC²+CF²=(2BE)²+BE²=5BE²∴BF=√5·BE
∵EF∥AC∥GH,FG∥BD∥HE,又AC⊥BD,∴四边形EFGH是矩形,∴EFGH共圆.
∵正方形OFED∴OF//DE∴∠BOF=∠ADC=90∵F为圆O切点∴OB=OF∴∠B=∠BFO=(180-90)/2=45∴∠C=90-45=45=∠B∴三角形BCD为等腰直角三角形
首先,利用中位线可得四边形EFGH是平行四边形当四边形ABCD满足条件AC⊥BD时,四边形EFGH是矩形当AC=2BD时EF=2FG
证明:连接EF,FG,GH,HE,AC∵E是AB中点,F是BC中点∴EF是△ABC的中位线∴EF‖AC,EF=1/2AC同理HG是△ACD的中位线∴GH‖AC,HG=1/2AC∴EF=HG,EF‖HG
过点D作DH‖BF,交BC于点H,交CE于点M,连接HG∵E为AB中点,F为AD中点∴AF=BE在△ABF和△BCE中∵AF=BE,∠A=∠ABC=90,AB=BC∴△ABF≌△BCE(SAS)∴∠A
证明:连DF、DE.设BF、CD交于G,CD、AE交于G‘.因为点D、E、F分别是△ABC的边AB、BC、CA的中点所以DF平行等于1/2BCDG/GC=FG/GB=1/2同理可得,DG'/G'C=E
连接BD因为E、F、G、H分别是AB、BC、CD、DA边的中点(中位线定理)所以GF=1/2BD切平行于BDHE=1/2BD且平行于BD所以GF平行却等于HE所以EFGH是平行四边形.
提示:由中位线定理,EF平行且等于AC的一半,GH也平行等于AC的一半,所以EF平行且等于GH,因此EFGH是平行四边形,要使平行四边形EFGH为菱形,只需要临边相等,而临边分别等于原四边形对角线的一
首先,利用中位线可得四边形EFGH是平行四边形当四边形ABCD满足条件AC⊥BD时,四边形EFGH是矩形当AC=2BD时EF=2FG
连接OE、OF,∵E、F分别为弦AB、CD的中点∴OE⊥AB,OF⊥CD,(垂径定理)∵∠AEF=∠CFE,∴∠OEF=∠OFE,∴OE=OF,∴AB=CD(相等的弦心中所对的弦相等).
G为CD中点∴CG=DG等腰梯形ABCD中AC=BD∠ACD=∠BDC∴△ACG≌△BDG∴AG=BG∵F.H为AG.BG中点∴FG=GH∵E为AB中点∴EF〃且=1/2BG∴EF〃且=GH∴四边形E