AB为n阶非零矩阵 且AB=0,则A和B的秩

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:14:45
两个矩阵相乘的秩练习题:设AB都是n阶非零矩阵,且AB=0,则AB的秩?答案是都小于n解题过程中说因为AB=0,故秩(A

定理:如果AB=0,则秩(A)+秩(B)≤n.证明:将矩阵B的列向量记为Bi.∵AB=0,所∴ABi=0,∴Bi为Ax=0的解.∵Ax=0的基础解系含有n-秩(A)个线性无关的解,∴秩(B)≤n-秩(

【急】设A为n阶矩阵,证明A的行列式=0,且存在非零n阶矩阵B时,AB=0

行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)

已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(

已知A,B均为N阶矩阵,且A2-AB=E,证明R(AB-BA-A)=N

∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A

设A为n阶非零矩阵,且|A|=0,证明存在n阶非零矩阵B使AB=0

因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.

设A,B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足

都小于n有个结论:设A,B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足R(A)+R(B)=1,r(B)>=0所以R(A),R(B都小于n

设A是为n阶非零矩阵且|A|=0,证明:存在n阶非零矩阵B,使AB=0(用行列式的知识)

证明:|A|=0即AX=0存在非零解那么若x1为AX=0的解向量,则利用x1,构成解矩阵B即可B=(x1,x2,…,xn),其中x1不等于0,x2=x3=…=xn=0而B为非零矩阵,即为所求

A,B为n阶矩阵且A+B=E,证明AB=BA

A(A+B)=AA+AB(A+B)A=AA+BAAA+AB=A=AA+BA所以AB=BA

设AB为n阶正交矩阵且|A||B|=-1 证明|A+B|=0

由于A,B为正交矩镇,AA^T=E,BB^T=E因此A^T(A+B)B^T=B^T+A^T=(A+B)^T所以|A^T(A+B)B^T|=|(A+B)^T|=|A+B|即|A^T||(A+B)||B^

已知A,B均为n阶非零矩阵,且AB=0,则A,B是否可逆

因为AB=0;所以B的列向量均是线性方程组AX=0的解,根据解空间的理论,r(A)+r(B)=n;又因为A、B均为非零矩阵,因此r(A)>=1;r(B)>=1;所以r(A)

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

线性代数中,设AB均为n阶非零矩阵,且AB=0,则A和B的秩 都小于零 答案上说由题可知

AB=0,求证r(A)+r(B)≤n,Sylvester公式r﹙A﹚+r﹙B﹚-n≤r﹙AB﹚右边为零,即得.[Sylvester公式的证明,教材上都有.用分块矩阵的初等变换,打起来麻烦,自己看吧!]

大学线性代数:已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。

若A,A*和B均为n阶非零矩阵,且AB=0,则r(B)=?

此题用到多个知识点.因为AB=0,所以r(A)+r(B)=1,r(B)>=1,r(A*)>=1所以r(A)=1知r(A)=n-1或r(A)=n故r(A)=n-1所以r(B)

设AB均为n阶方阵,若AB=0,且B不等于零,则必有A为不可逆矩阵,为什么啊

又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆