AB为圆O直径,C为弧AE中点,CD⊥AB,证明:AF=CF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:51:59
如图AB、CD是⊙O的直径,E为⊙O上一点,且AE‖CD,求证:D是弧BE的中点

证明:∵AE‖CD∴弧AC=弧DE∵∠AOC=∠BOD∴弧AC=弧BD∴弧BD=弧DE即D是弧BE的中点

AB是圆O的直径,C为弧AE的中点,CD垂直AB于D,交AE于点F,连接AC,求证:AE=CF.

求证的结果应该是AF=CF吧?若是我猜的证明如下:延长CD交圆于点P则可知AB⊥CP且平分CP∴弧AP=弧AC∵C是弧AE的中点∴弧AC=弧CE∴弧CE=弧AP∴∠PCA=∠EAC(同弧所对的圆周角相

AB为圆O的直径,C为弧AE的中点,CD垂直BE于D,判断DC于圆O位置关系,

相切连OC交AE于F∵C是弧AE中点∴F是弦AE中点∴OC∥BE又CD⊥BE∴CD⊥OC∴CD与圆O相切

如图,AB是圆O的直径,C是弧BD的中点,CE垂直AB,垂足为E,BD交CE于点F

连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD

如图,AB为圆O的直径,E为圆O上一点,C是弧EB的中点,CD垂直AE于D.试判断OC与AD的位置关系.

∵AB是直径,∴∠AEB=90°(直径所对的圆周角等于90°)即BE⊥AE,∵C是弧EB中点,∴OC⊥BE(垂径定理的逆定理)∴OC∥AD(垂直于同一直线的两直线平行)条件“CD垂直AE于D”多余.再

如图AB是圆O的直径,AE为弦,C为弧AE的中点,CD垂直AB于点D,交AE于点F,BC交AE于点G求证CF=GF

证明:连接AC,延长CD交圆O于M.CD垂直AB,则:弧AM=弧AC=弧CE,∠ACM=∠CAE;又AB为直径,∠ACB=90度.故:∠FCG=∠FGC(等角的余角相等)所以,CF=GF.

如图,AB是圆O的直径,C为弧AE的中点,CD⊥AB于D,交AE与点D,交AE于点F,求证AF-CF

答案如图所示,友情提示:点击图片可查看大图再问:大哥,我要证明的是AF=CF再答:写错了==,从倒数第三行开始修正为∴∠B+∠BCD=90°又∠ACF+∠BCD=90°∴∠B=∠ACF∴∠B=∠CAF

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

AB是圆的直径,E为圆O上一点,C为弧EB的中点,CD垂直于AE于D,判断OC与AD的位置关系

OC平行且是AD的一半延长DC交AB的延长线于M因为CD和BE(半圆中角AEB是直角)都垂直于AE,所以两线平行.又因为C是中点OC垂直且平分EBOC就是三角形ADM的中线.所以OC平行且是AD的一半

AB是圆O的直径,AE为弦,C为弧AE的中点,CD垂直AB于D,交AE于F,BC交AE于G,求证:AF=FG

证明:连接AC因为C是弧AE的中点所以弧AC=弧EC所以∠CAE=∠ABC因为直径AB垂直平分弦CN所以弧AC=弧AN所以∠ACN=∠ABC所以∠ACN=∠CAE所以AG=CG因为AB是直径所以∠AC

已知,AB为半圆O的直径,CD垂直于AB于D,C为弧AB中点,弦AE交CD于F,求证AF等于CE

这个题目有问题吧,AB是直径,C是弧AB的中点,CD垂直于AB的话,D点应该和圆心O重合.

如图,AB为圆O的直径,点C为弧AB的中点,弦CE交AB于点F,D为AB延长线上一点,

连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)

如图所示,AB是圆O的直径,点C是弧AB的中点,D为圆O上一点,求角ADC的度数

已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9

AB是圆o的直径,E为圆O上的一点,C为弧EB的中点,CD⊥AE于D,CD与圆O的位置关系,并说明理由.

连接AC和OC,因为:C为BCE的中点,所以:∠BAC=∠EAC,又:OC=OA,所以:∠BAC=∠OCA,因为:∠EAC=∠OCA,所以:OC//DA,又:AD⊥AE,所以:OC⊥CD,即:过O,垂

如图,AB为⊙O的直径,C为弧AE的中点,CD⊥BE于D

连接AE、OC,相交于F,∵AB为直径,∴∠AEB=90°,∵C为弧AE的中点,∴OC⊥AE,AF=EF,∵CD⊥BE,∴四边形CDEF是矩形,∴EF=CD=3,∴AE=2EF=6,在RTΔABE中,

如图,AB为⊙O的直径,E为⊙O上一点,C是弧EB的中点,CD垂直AE于D.

连接CA弧BC=弧CE,∴∠EAC=∠CAB.∠EAB=2∠CAB∠COB=2∠CAB(同弧所对圆心角是圆周角的2倍)∠EAB=∠COBOC‖AE,即OC‖AD

如图,AB为圆O的直径,c为半圆的中点,D为弧AC上一点,延长AD至E使AE=BD,连CE,求CE/DE

首先,要做出三条辅助线,分别连接CD,CB,AC然后由题意可知,∠ACB为90°,且C为弧AB中点,所以AC=BC且由同弧所对的圆周角相等可得,∠EAC=∠CBD,且由题意可知,AE=BD由边角边定义

如图AB是圆O的直径,AE为弦,C为弧AE的中点,CD垂直AB于点D,交AE于点F,BC交AE于点F,求证AF=CF.

 证明:连AC因为C是弧AE的中点所以弧AC=弧EC所以∠CAE=∠ABC因为AB是直径所以∠ACB=90,即∠ACD+∠BCD=90°因为CD⊥AB所以∠CDB=90°即∠ABC+∠BCD

AB为圆O的直径,BE切圆O于点B,连接AE交圆O于点C,D是BE的中点.求证CD是圆O的切线

连接CO,CB∵AB为直径∴△ACB为直角△∵BE切圆O于点B∴∠ACB=∠ABE=90°∴∠CAB+∠CBA=∠CBA+∠CBE=90°∴∠CAB=∠CBE∵∠BCE=90°,D是BE的中点∴DC=