AB均为n阶对称矩阵,结论

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:39:40
请问:A,B均为n阶实对称矩阵,且都正定,那么AB一定是:A对称矩阵B正定矩阵C可逆矩阵D正交矩阵

正定则顺序主子式都大于0所以|A|≠0,|B|≠0所以|AB|=|A||B|≠0所以AB可逆所以(C)正确.再问:这样呀,那其它答案为什么不正确,或者为什么不能确定呢?

设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

线性代数证明题.设B为任一n阶方阵,A为n阶实对称矩阵,证明BтAB为对称矩阵.

(BтAB)т=(B)т(A)т(Bт)т=BтAтB=BтAB,不就是对称矩阵么?再问:思路是什么啊。为什么一开始要求BтAB的转置呢。你的证明我看懂了。再答:什么是对称矩阵?!对称矩阵不就是证明转

A为n阶实对称矩阵,B为半正定矩阵,求证AB特征值全为实数

注意CC^TB相似于C^{-1}(CC^TB)C=C^TBC即可再问:条件没说A正定额。再答:没看清楚,不过好办,假定B正定,用上述方法得到AB的特征值是实数。若B奇异,取正定矩阵序列B_k=B+1/

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

N阶对称矩阵问题 A B是两个N阶对称矩阵 证明 AB+BA是对称矩阵 AB-BA是反对称矩阵

AB是两个N阶对称矩阵A^T=A,B^T=B(AB+BA)^T=(AB)^T+(BA)^T=B^TA^T+A^TB^T=AB+BA故AB+BA是对称矩阵同样(AB-BA)^T=(AB)^T-(BA)^

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

设A为n阶对称矩阵,B为n阶反对称矩阵证明:1)AB-BA为对称矩阵 2)AB+BA为反对称矩阵

(1)因为(AB-BA)'=B'A'-A'B'=-BA+AB=AB-BA,故AB-BA对称(2)(AB+BA)'=B'A'+A'B'=-BA+A(-B)=-(AB+BA)故AB+BA反对称

设A,B均为n阶对称矩阵,证明:AB+BA也为n阶对称矩阵.

考察(AB+BA)^T(AB+BA)^T=(AB)^T+(BA)^T=(B^T)(A^T)+(A^T)(B^T)由于A,B均为n阶对称矩阵所以原式=BA+AB所以AB+BA也是对陈阵.

设A,B均为n阶对称矩阵,则AB对称的充分必要条件是:AB=BA

证明:必要性已知AB为对称阵转置(AB)'=B'A'又A'=AB'=B(AB)'=AB所以有AB=BA充分性已知AB=BA(AB)'=(BA)'=A'B'又A'=AB'=B所以(AB)'=ABAB为对

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设A,B均为N阶对称矩阵,则AB对称的充分必要条件是:AB=BA.

(1)若AB是对称矩阵,则(AB)T=AB,而(AB)T=BTAT=BA,故有BA=AB;反之,若BA=AB,则(AB)T=BTAT=BA=AB,即(AB)T=AB,AB为对称阵.(2)(A+AT)T

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B

设,AB均为n阶的对称矩阵,证明:AB为对称矩阵的充要条件是 A与B可交换

证明:因为A,B均为n阶的对称矩阵,所以A'=A,B'=BAB为对称矩阵(AB)'=ABB'A'=ABBA=AB即A与B可交换

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

设AB均为n阶实对称矩阵,证明存在n阶可逆矩阵P,使得P'AP与P'BP均为对角矩阵(p’为转置矩阵)

对任一n维非零列向量x,总有x'(A'A)x=(Ax)')(Ax)>=0,且x'x>0所以当a>0时,有x'Bx=ax'x+x'(A'A)x>0故B正定

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

谁会矩阵的题啊,设A为n阶对称矩阵,B为n阶反对陈矩阵.证明:1、B^2(B的平方)为对称矩阵;2、AB-BA为对称矩阵

1.(B^2)'=(B*B)'=B'*B'=(-B)*(-B)=B^22.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA(AB+BA)'=(AB)'+(BA)'

设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA

证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(