作业帮 > 数学 > 作业

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 19:32:04
设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.
证明:必要性 由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则 AB也是对称矩阵,从而AB=(AB)'=B'A'=BA.即证得了AB=BA.充分性 若AB=BA,则(AB)'=B'A'=BA=AB,这说明AB实对称.其次,由于A,B都是n阶正定矩阵,从而A,B都与单位矩阵合同,于是存在两个可逆实矩阵P,Q,使得A=P'P,B=Q'Q,进而AB=P'PQ'Q.注意到P'PQ'Q=Q^(-1)(QP'PQ')Q,这说明P'PQ'Q与)QP'PQ'相似,另外,QP'PQ'=(PQ')'(PQ'),根据P,Q都是可逆实矩阵,PQ'也是可逆实矩阵,因此QP'PQ'正定,所以QP'PQ'的特征值都是正实数.由于相似的矩阵具有相同的特征值,故AB=P'PQ'Q的特征值都是正实数.这就证明了AB正定.