ab是圆0的直径,BC是圆0的切线,OC与圆0相交于D点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:08:07
圆的面积公式是πrr.直径AB的圆半径是1,则面积是π.直径AD的圆半径是3,则面积是9π.所以,直径AB的圆面积是直径AD的圆的面积的9分之1.
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
你最好先画一个图,理清这些线段之间的关系,因为AB和DE都是直径,可以得出三角形OAD和OBE是全等的,可得到AD=BE,又因为AD弧和CE弧相等,可得AD=CE对等可得CE=RE,这样因为DE是直径
是三分之根号三或是根号三
证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C
连接BD,OD,OC易求得CD=1,AB=2所以OC=OD=CD=1故角COD=60度所以角CBD=1/2角COD=30度由AB是直径,得角EDB=90度所以角DEB=90-30=60度
第一问∵在三角形OBC中OC=BC,且∠OBC=60度∴三角形OBC是等边三角形∴半径=BC=2∵CD与圆O相切∴OC⊥CD又∵∠COB=60°∴OD=2CO=4∴BD=2第二问∵AB是直径∴∠C=9
∵x²+y²=r²∴B(-r,0),C(r,0),A(rcosQ,rsinQ)∴AB=(-r-rcosQ,-rsinQ),AC=(r-rcosQ,-rsinQ)AB*AC
在平面直角坐标系中:设圆O在原点O(0,0),半径为1,A(-1,0),B(1,0),C(x,y),且x²+y²=1.AC=(-1-x,0-y)BC=(1-x,0-y)AC·●BC
连接OEO为圆心CE//AB==>∠BOC=∠OCE,∠AOE=∠OEC(两平行线之间内错角相等)△COE为等腰三角形==>∠OCE=∠OEC==>∠BOC=∠AOE∴BC弧=AE弧(同一圆内圆心角相
连接OC,AC,BC...假设第一个三等分点为C,第二个三等分点为D∵C,D为半圆的三等分点∴CD∥AB 角COD=60°又∵OC=OD∴△OCD为等边三角形∴CD=OC=OA(半径相等)∴
设AB=2a(a>0)连接CA,CB;∵AB是圆O的直径∴∠ACB=90°∵点C是半圆上的三等分点∴弧AC﹙或BC﹚=60°∴∠ABC﹙或∠BAC)=30°∴AC﹙或BC)=½AB=a,BC
取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R
BC⊥AC,AC∥OD,CE=BE,弧CD=弧BD,角A=角BOD
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/
总体思路是证明三角形CBA相似于三角形DBC,连接AC,延长CO交圆于E点,连BE,因为角BCD+角BCE=角BCE+角ACE=90度;所以角BCD=角ACE;又由圆的性质知:角ACE=角ABE(同一
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的