An*An 1=2Sn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:58:04
1.Sn=-2an+3有S(n-1)=-2a(n-1)+3则an=Sn-S(n-1)=-2an+2a(n-1)=>an=a(n-1)*2/3所以,{an}为共比数列,q=2/32.Sn=-2an+3有
当n=1时、有2s1+1=3a1,即有a1=1,因为2Sn+1=3an,所以2Sn+1+1=3an+1.后式减去前式,得2an+1=3an+1-3an.即有an+1=3an,为等比数列,且公比为3,所
由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴
S1=A1=2A1-3故A1=3而An=Sn-S(n-1)=(2An-3n)-[2A(n-1)-3(n-1)]=2An-2A(n-1)-3故An=2A(n-1)+3故An+3=2[A(n-1)+3]即
由题意可得an=2Sn^2/(2Sn-1)又由于an=Sn-S(n-1)即Sn-S(n-1)=2Sn^2/(2Sn-1)化简得Sn+2SnS(n-1)-S(n-1)=0两边同除SnS(n-1)得1/S
(1)证明:∵Sn-2an=2n,①∴Sn+1-2an+1=2(n+1).②②-①,得:an+1-2an+1+2an=2,∴an+1=2an-2,∴an+1-2an-2=(2an-2)-2an-2=2
an+sn=-2n-1,当n=1时,a1+s1=-3,则a1=-3/2.由已知得:sn=-2n-1-an当n大于或等于2时,则an=sn-s(n-1)=-2n-1-an-[-2(n-1)-1-a(n-
sn=n^2ans(n-1)=(n-1)^2*a(n-1)sn-s(n-1)=n^2an-(n-1)^2*a(n-1)=an(n^2-1)an=(n-1)^2a(n-1)(n+1)an=(n-1)a(
由an=Sn-Sn-1有,(Sn-Sn-1)+(1/(Sn-Sn-1))=2Sn整理一下可以得到Sn的平方=Sn-1的平方+1说明Sn的平方是等差数列再由a1+1/a1=2S1=2a1得到a1=1所以
(an+2)/2=√(2Sn)两边平方整理:(an+2)²=8snn-1代换n(a(n-1)+2)²=8s(n-1)两式对应相减(an+2)²-(a(n-1)+2)
已知a_(n+1)=S_n得a_n=S_(n-1)(n>1)两式相减a_(n+1)-a_n=S_n-S_(n-1)=a_n(n>1)得a_(n+1)=2a_n(n>1)因为a_2=S_1=a_1=-2
(1)证明:若an+1=an,即2an1+an=an,解得an=0或1.从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,故an+1≠an成立.(2)由a1=12,得到a2=2
因为Sn+Sn-1=3an所以Sn-1+Sn-1+an=3an2Sn-1=2anSn-1=an因为Sn=an+1所以Sn-Sn-1=an+1-anan=an+1-an2an=an+1an+1/an=2
Sn-1=(n-1)(n-1)an-1Sn-Sn-1=an=nnan-(n-1)(n-1)an-1(nn-1)an=(n-1)(n-1)an-1an=(n-1)/(n+1)*(n-2)/(n-1)*…
(1)An=3(1+2^n)(2)由题知,Sn=2An+3n-12=6(2^n-1)+3nBn=(An-3)/(Sn-3n)(A(n+1)-6)=(3*2^n)/(6(2^n-1))(3(2^(n+1
a[n+1]=a[n]/(a[n]+2)是不是这样子?那么两边同时取倒数.1/a[n+1]=[an+2]/an=1+2/an1/a[n+1]+1==2+2/an=2{1/an+1}所以形如1/an+1
∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4
1.n=1时,S1=a1=(a1²+a1)/2,整理,得a1²-a1=0a1(a1-1)=0a1=0(与已知不符,舍去)或a1=1S1=a1=1n≥2时,Sn=(an²+
已知Sn=2An-1取n=1得:S1=2A1-1又因为S1=A1,解上述方程可得:A1=1Sn=2An-1S(n-1)=2A(n-1)-1注:"n-1"为下标上下两式相减得:Sn-S(n-1)=2An
(1)令n=1,得a1=-1.Sn=2an+n,S(n+1)=2a(n+1)+n+1.两式相减,得a(n+1)=2a(n+1)-2an+1.整理得a(n+1)-1=2(an-1),a1-1=-2.综上