AP,CP分别是三角型ABC外角MAC与
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:42:54
如图:∵S△PBC=12PM•BC,S△ABC=12AN•BC,∴S△PBCS△ABC=PMAN=PDAD=xx+6,同理:S△PACS△ABC=yy+6,S△PABS△ABC=zz+6,∵S△ABC
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
证明:过P作PE⊥AB,PF⊥BC,PG⊥CD,PH⊥AD,因为AP、BP、CP分别平分∠DAB、∠ABC、∠BCD,所以PH=PE,PE=PF,PF=PH,所以PH=PE=PF=PG=PH所以四边形
作PM⊥BC于M,AN⊥BC于NS⊿PBC=1/2PM×BCS⊿ABC=1/2AN×BCS⊿PBC/S⊿ABC=PM/AN=PD/AD=x/(x+6)同理S⊿PAC/S⊿ABC=y/(y+6),S⊿P
如图,作PM⊥BC于M,AN⊥BC于NS△PBC=1/2PM*BCS△ABC=1/2AN*BCS△PBC/S△ABC=PM/AN=PD/AD=x/(x+6)同理S△PAC/S△ABC=y/(y+6),
再问:有些看不懂T-T再答:定理1:如果点P到一个角的两边垂直距离相等,那么P在这个角的平分线上(BP是平分线)所以我们要证P到两边的距离相等定理2:如果两个直角三角形的斜边和一个锐角相等,那么这两个
证明:过点P作PE⊥AC于E∵AP平分∠MAC,PD⊥BM,PE⊥AC∴RT△PDA≌RT△PEA(角角边)∴PE=PD∵CP平分∠NCA,PF⊥BN,PE⊥AC∴RT△PFC≌RT△PEC(角角边)
图在哪里?再问:发不了啊,怎么发啊再答:插入图片?再问:关键我找不到设备啊,不能截图再答:那个到底是角度还是面积啊?再问:面积再答:设SAPE=x,SBPF=y,根据比例关系有:(x+35)/(y+8
角平分线上的点到角两边距离相等证明:作PD⊥AM,PE⊥AC,PF⊥CN因为AP、CP为两个外角角平分线所以∠MAP=∠CAP,∠ACP=∠NCP因为∠PDA=∠PEA=90°,AP=PA所以△ADP
根据两边之和大于第三边,所以AP+BP>ABBP+CP>BCAP+CP>AC加起来就行了~
证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC
证明:在△APD和△APE中因为AP平分∠MAC所以DP=EP,(角平分线的性质)同理PE=PF所以PD=PF所以P在∠MBN的角平分线上所以PB平方∠MBN
假命题!设∠C→90°-0,则PF→0+0.1/PF→+∞.与1/PD+1/PE+1/PF=1.矛盾.
过P作PF⊥AC,交AC于F过P作PE⊥BC,交BC延长线于E过P作PG⊥AB,交AB延长线于G因为AP平分∠GAC,所以PG=PF(角平分线上的点到角两边距离相等)因为CP平分∠ACE所以PF=PE
不知道你有没有学过中位线,以下是用中位线求解.作点H,使AH=HP.连MH.∵AM=MB,AH=HP∴在△ABP中MH为中位线∴MH‖BP且MH=1/2BP又∵MH‖PN且P为HC的中点∴PN为中位线
根据三角形两边之和大于第三边定理可得AP+BP>ABBP+CP>BCCP+AP>AC所以2(AP+BP+CP)>AB+BC+CA即AP+BP+CP>0.5(AB+BC+CA).
证明:需要做辅助线,三条垂线,第一,过P向AC作垂线垂足为D,过P向AB坐垂线垂足为E,过P向BC做垂线垂足为F.之后根据外角平分线,角ECP和角BCP相等,加上直角和公共边,便可说明三角形ECP和F
如果我没画错的话由题意得∠MBP=∠CBP,∠BCP=∠NCP,∠BAP=∠CAP=a/2∴∠BPC=360°-∠ABP-∠BAC-∠ACP=360°-(180°-∠PBM)-a-(180°-∠PCN
后面跟着ADBE怎么能够同时跟出三个而且他们之间没有运算符啊》把题弄清楚嘛小兄弟!