A为n阶矩阵,非齐次线性方程组有不同解n1 n2 n3 且A伴随不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:09:25
"齐次线性方程组AX=0仅有非零解"应该改成"齐次线性方程组AX=0仅有零解"或者"齐次线性方程组AX=0有非零解"你得先掌握Ax的意义把A按列分块成A=[a1,...,an]那么Ax=x1a1+x2
矩阵之间的等价关系具有以下性质1反身性A~A2对称性若A~B,则B~B3传递性若A~B,B~C,则A~C.对任何方阵A,A~E(行变换)的充分必要条件是A可逆,且当A可逆时,(A,E)~(E,A-1)
Ax=b有解的条件是r(A)=r(A|b),所以D肯定不对,因为它没有考虑增广矩阵C显然不对,因为m=n不保证A满秩A显然对,因为r(A)=m,而r(A|b)不可能比m大,因为A|b只有m行,秩不可能
系数矩阵A的秩为n-1,则AX=0的基础解系有n-r(A)=1个向量.再由A的每行的元素之和均为0知(1,1,...,1)'是AX=0的一个非零解.所以AX=0的通解是c(1,1,...,1)',c为
必须无解.因为x的秩<b的秩.
|A|=0证明:设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0仅有零解.但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0有非零解,则r
|A|=0因为B非零,B的列向量都是AX=0的解,所以AX=0有非零解.所以|A|=0.
证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解
设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=0再问:怎么算的,为什么?再答:AX=B有解,所以A的秩等于(A|B)的秩,所以(A|B)不是满秩的。
B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解说明齐次线性方程组Ax=0有非零解,故其系数行列式|A|=0.(n元齐次线性方程组当方程的个数等于未知数的个数时,方程组有非零解的充要
令x1,x2,为A有2个无关解,则S=n-r(A)r(A)=n-2〈n-1则r(A*)=0,即A*=0所以x1,x2也为A*X=0的解再问:能将的详细一点吗?不是很明白。r(A)=n-2〈n-1则r(
若r1,r2线性相关则r1,r2成倍数关系,既有r1=kr2而知道r1-r2为齐次方程的解,r1-r2=(1-k)r2所以有A(1-k)r2=(1-k)Ar2=0与Ar2=b矛盾!,所以两个无关如果A
将题补全.设A为n阶矩阵,秩(A)=n-1,X1,X2是齐次线性方程组Ax=0的两个不同的解,则Ax=0的通解是kX1或kX2(要求X1或X2不等于零,即不能是零解),其中k是任意数.
1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数
矩阵的秩不超过其行数与列数
|A|=0B的每一个列向量都是齐次线性方程组Ax=0的解所以Ax=0有非零解,所以系数矩阵行列式为0
因为A(b1,b2...bn)=0得R(A)+R(B)0得到R(A)
因为AB矩阵为m×m方阵,所以未知数的个数为m个,又因为:r(AB)≤r(A)≤n,(1)当m>n时,r(AB)≤r(A)≤n<m,即系数矩阵的秩小于未知数个数,所以方程组有非零解.(2)当m<n时,
证明:显然有:Ax=0的解必然也是A'Ax=0的解.下面证:若A'Ax=0,那么Ax=0x是n维列向量,A'Ax是n维列向量且A'Ax=0,x'是n维行向量.方程A'Ax=0两边左乘x'得:x'A'A
若m>n则r(A)≤min(m,n)≤n若m=n则r(A)=n=m若mn则r(A)≤min(m,n)≤n?是n>min(m,n)固然