A为反对称矩阵,证明B^TAB也是反对称矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:08:42
由已知,A^T=-A,B^T=-B所以,AB为反称矩阵(AB)^T=-ABB^TA^T=-AB(-B)(-A)=-ABBA=-ABAB=-BA再问:B^TA^T=-AB,为什么是-AB,而不是BA,不
根据性质5可以得的即奇数阶反对称矩阵则|A|=0证明|A|=|A'|=|-A|=-|A|,所以|A|=0再问:全过程就是这些吗?再答:人家数学论文就是这样写的或者参考之前别人的答案|A|=|A'|=|
A=-A^t,B^t=BA^2=(-A)^t(-A)^t=(A^2)^t所以A^2为对称矩阵(AB-BA)^t=(AB)^t-(BA)^t=B^tA^t-A^tB^t=B(-A)+AB=AB-BA所以
证明:∵A是对称矩阵∴A^T=A∵B是反对称矩阵∴B^T=-B∴(AB-BA)^T=B^T*A^T-A^T*B^T=-BA-A(-B)=AB-BA∴AB-BA是对称矩阵证毕
首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是
结论根本就是错的.只有1阶反对称阵肯定是幂零阵.反对称矩阵的特征值都是0或者纯虚数,只要有一个非零特征值及不会是幂零阵.举个2阶的反例01-10高阶的在后面继续补零.
选B由题目得:A'=A,B'=-B;因此选项A:(BAB)'=B'A'B'=BAB选项B:(ABA)'=A'B'A'=-ABA剩下的两个你自己分析一下吧,我得去吃饭了,别忘了(AB)'=B'A',顺序
应该说这个标准型看上去不是很舒服,最好先把它转化到M=diag{D,D,...,D,0,0,...,0}其中D=01-10这步合同变换很容易,按1,n,2,n-1,3,n-2,...的次序重排行列即可
对非零列向量xBx是一个列向量则(Bx)'(Bx)>=0[这里要求B是实矩阵--线性代数默认]这是内积的非负性(一个性质),原因:设Bx=(a1,...,an)'则(Bx)'(Bx)=a1^2+...
题:若A对称矩阵,B是反对称矩阵,AB-BA是对称矩阵吗?怎么证明?由已知,A=A',B=-B'故(AB-BA)'=B'A'-A'B'=-BA+AB=AB-BA即AB-BA是对称矩阵.
(1)因为(AB-BA)'=B'A'-A'B'=-BA+AB=AB-BA,故AB-BA对称(2)(AB+BA)'=B'A'+A'B'=-BA+A(-B)=-(AB+BA)故AB+BA反对称
A是对称矩阵,则A^{-1}对称,再利用定义可证(A∧(-1)B∧2-B∧2A∧(-1))^T=-(A∧(-1)B∧2-B∧2A∧(-1))
|A|=|A'|=|-A|=(-1)^5×|A|=-|A|,所以|A|=0
这用到一个结论:实反对称矩阵的特征值是零或纯虚数所以I-A^2的特征值为1或1-(ki)^2=1+k^2>0所以I-A^2是正定矩阵
(1)(A²)^T=(A^T)²=(-A)²=A²所以A²是对称矩阵;(2)(AB-BA)^T=(AB)^T-(BA)^T=B^TA^T-A^TB^T
...哥直接按定义证阿(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'为对称矩阵(A-A')'=A'-(A')'=A'-A=-(A-A')所以A-A'为反对称矩阵
因为A为反对称矩阵则A=-A^T(A^2)^T=(A^T)2=(-A)(-A)=A^2是实对称矩阵再问:a是反对称矩阵b实对称矩阵证明:(1)ab-ba是对称矩阵?(2)ab是反对称矩阵的充分必要条件
证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(