A是n阶非零矩阵,E维n阶单位矩阵,若A的三次方=0.则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:41:22
知识点:1.AB=0,则r(A)+r(B)
E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=
n阶矩阵A满足A平方=A===>r(A)≤n当r(A)=n时,===>A=E===>r(A-E)=0===>r(A)+r(A-E)=n当r(A)A为至少有一行是全0的单位矩阵===>r(A)+r(A-
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
另一个方法是这样:令B=E-A,则A=E-B代入A^3=0得E-3B+3B^2-B^3=0所以B(B^2-3B+3E)=E.所以B可逆,且B^-1=B^2-3B+3E.即E-A可逆,且(E-A)^(-
楼上的想法不对吧,你只说明了矩阵A是一个对角矩阵,并且可能是单位阵的倍数,不能说明A是单位阵,要说明单位阵,除了说明:“正交矩阵表明A^(-1)=A',正定矩阵表明A合同于E,即A=C'EC,所以A^
证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无
R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E
(A-E)²=2(A+E)²A²-2A+E=2A²+4A+2E整理得:A²+6A=-EA(A+6E)=-E所以A[-(A+6E)]=E故A^-1=-(
证明:因为A=E-2αα^T/(α^Tα)所以A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)所以AA^T=[E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)
按分块矩阵的乘法A^-1[A,E]=[A^-1A,A^-1E]=[E,A^-1].(*)教材中有这样的结论:n阶方阵A可逆的充分必要条件是A可以表示成有限个初等矩阵的乘积.当A可逆时,其逆矩阵A^-1
AB+B=A(A+E)B=A+E-E(A+E)-(A+E)B=E(A+E)(E-B)=E所以A+E是可逆矩阵(A+E)(E-B)=(E-B)(A+E)=EA-AB+E-B=A+E-BA-BAB=BA
||Aβ||²=Aββ'A'=﹙E-2αα'﹚ββ'﹙E-2αα'﹚=ββ'-2ββ'αα'-2αα'ββ'+4αα'ββ'αα'注意α‘αβ’βα‘β=β’α都是“数”﹙1行1列﹚可以和矩
结论:实反对称矩阵A的特征值只能是0或纯复数,所以-1不是A的特征值,所以0不是E+A的特征值所以A+E可逆
由A有n个不同特征值,则A可对角化,则存在P,使P逆AP=Λ,其中Λ为对角阵,且对角线元素为1,2,...,n,由于P逆与P的行列式之积为1,则|A+3E|=|P逆|*|A+3E|*|P|=|P逆(A
|A|E=(|A||A|.|A|),|A|位于对角线上
(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决
利用定义就可以了,对任意的非零向量xx^T(E+A^TA)x=x^Tx+(Ax)^T(Ax)>0
(=>)因为A正定,所以X^TAX的规范形为y1^2+...+yn^2所以存在可逆矩阵C满足C^TAC=E所以A合同于单位矩阵(再问:为什么从规范形得出存在可逆矩阵C,满足那个式子?谢谢老师:)