A是反hermite矩阵,当且仅当A的特征值是零或纯虚数

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/05 20:06:16
矩阵A为实矩阵,且(A^T)A=A(A^T).证明:A是对称矩阵.

这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?

设A是n阶实对称矩阵 证明:A是半正定矩阵当且仅当对任意n阶半正定矩阵B都有tr(AB)大于等于

必要性:若A,B半正定,则存在C使得B=CC^T,那么tr(AB)=tr(ACC^T)=tr(C^TAC)>=0充分性:反证法,若A不是半正定的,则至少有一个负特征值λ再问:您好,我还想弱弱地问一下t

如何证明n阶矩阵A即是正交矩阵又是正定矩阵当且仅当A为单位矩阵?

如果A是单位矩阵,则A是正交矩阵也是正定矩阵,这是显然的.如果A既是正交矩阵也是正定矩阵,则A=A'=A逆,所以A^2=E,A的特征值是1或-1.又A正定,特征值都是正的,所以A的特征值都是1.所以A

矩阵A为Hermite阵,证明e^^A正定

直接利用谱分解定理,e^A也是Hermite矩阵并且特征值是exp(\lambda_i)>0,其中\lambda_i是A的特征值.补充:看来你真的是什么也不懂,应该好好补习补习了.由谱分解定理,存在酉

大学线性代数可逆矩阵设A,B均为n阶矩阵.证明:分块矩阵(A B)是可逆矩阵当且仅当A+B与A-B均为可逆矩阵B A

证明(AB)是可逆矩阵?没弄错么这样就不是方阵了何来可逆.再问:我下面写了第二行是BA啊再答:AB列变换A-BB行变换A-BBBAB-AA0A+B所以其行列式为|A-B||A+B|A+B与A-B均为可

如何证明λ是矩阵A的特征是当且仅当1/λ是A的逆(矩)阵的特征值?

当Ax=λx=>A^(-1)Ax=A^(-1)λx=>Ix=λA^(-1)x=>1/λx=A^(-1)x当A^(-1)x=1/λx证明同上得证

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

设A为n阶实矩阵,证明A是正交矩阵当且仅当对任意的n维向量α,β有(Aα,Aβ)=(α,β)

(α,β)=β^Tα,(Aα,Aβ)=β^TA^TAα  显然当A是正交阵的时候(Aα,Aβ)=(α,β)  反过来,令M=A^TA,M是一个对称阵  取α=β=e_i得到M(i,i)=1,这里e_i

A、B都是n阶Hermite 矩阵,证明:A与B相似的充要条件是它们的特征多项式相同

很是正常,因为在这个世界上,权倾一时炙手可热者太多,其无限风光让人望之兴叹;腰缠万贯富甲一方者甚众,其富豪做派可望而不可及;帅男靓女花容月貌倾国倾城者如过江之鲫,其知名度影响力与常人不可同日而语;这些

A,B均为Hermite矩阵,且A正定,试证AB相似于实对角矩阵.

A正定,则存在可逆阵G使得A=GG^T,则AB=G(G^TBG)G^{-1},即AB相似于G^TBG这个对称阵,因此相似于某个实对角阵.

矩阵A是可逆矩阵当且仅当0不是A的特征值怎么证

既然讨论A是否可逆,则A一定为方阵由|λE-A|=λ^n-(a11+a22+…+ann)λ^(n-1)+…+(-1)^n|A|=(λ-λ1)……(λ-λn),比较常数项可得:|A|=所有特征值的乘积所

满秩矩阵相乘的秩?要证明:当且仅当存在满秩矩阵X:m*p 和Y:n*p,且A=X*Y'时,矩阵A的秩是p.show th

利用结论,rank(T)=P,当且仅当存在可逆矩阵M,N使得T=M*diag(Ip,0)*N必要性:如果rank(A)=p,由结论存在可逆矩阵P,Q,使得A=P*diag(Ip,0)*Q把P分成两列P

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

A,B都是hermite 矩阵,如何证明特征值实数

仅证A即可.A是Hermite矩阵,则A^H=A,A^H是A的共轭转置,设a是A的任意特征值,x是相应特征向量,则Ax=ax,两边取共轭转置得x^HA^H=a*x^H,其中a*是a的共轭复数,两边分别

有关Hermite矩阵和正定矩阵的证明题目

还没人帮你做?那么我再给你点提示:取A的最小特征值对应的单位特征向量x,考察B=xx'+e*I,并令e->0即可.

假设A是sXn矩阵.证明:存在半正定sXs Hermite矩阵B,使得A*(A^H)=B^2 .(A^H) 为A的共轭转

A*(A^H)是Hermite半正定矩阵,用一下谱分解定理直接就出来了.

证明一个N阶实对称矩阵A是正定的当且仅当存在可逆实对称矩阵B,满足A=B*B

若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上

设A,B是n阶矩阵,证明:当且仅当A和B都可逆,乘积矩阵AB可逆.

知识点:|AB|=|A||B|A可逆|A|≠0证:A,B都可逆|A|≠0,|B|≠0|A||B|≠0|AB|≠0AB可逆

A,B均为Hermite矩阵,且A正定,B非负定,AB=BA,证AB为非负定.

AB=BA得到AB也是Hermite阵,只需验证其特征值非负先分解A=CC^H,然后AB=CC^HB相似于C^HBC,由惯性定理后者是半正定的

A是n阶矩阵,证明:A可逆当且仅当对任意n维向量β,方程组Ax=β有解

首先要有这个概念:方程组Ax=β有解当且仅当β可由A的列向量组线性表示.若这个结论没问题,就可以这样证明充分性因为对任意n维向量β,方程组Ax=β有解所以任一n维向量都可由A的列向量组线性表示特别地,