a的逆矩阵等于a的转置矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:12:31
已知A为奇数阶矩阵,行列式大于0,A×(A的转置)等于单位矩阵,证明单位矩阵减去A不可逆

|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.

已知A为奇数阶矩阵,行列式大于0,A×A的转置等于单位矩阵,证明单位矩阵减去A不可逆

记得帮你答过了的|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.

老师好,如何证明矩阵A与其转置的乘积的特征值等于矩阵A的转置与矩阵A的乘积的特征值.

前提是A必须是方阵,否则会相差一些零特征值对于方阵而言更一般的结论是AB和BA的特征值完全相等(计代数重数)证明很简单,比如说直接证明μIABμI的行列式是det(μ^2I-AB),同时又等于det(

如果矩阵A乘以它的转置矩阵等于0,则矩阵A等于

数学公式这里不好写,所以就用图片了.

怎么证明矩阵A与矩阵A的转置矩阵的特征值相同

设矩阵A经过初等行变换之后,化为上三角矩阵B,则A等价于B矩阵A'经过初等列变换之后,可化为下三角矩阵C,则A'等价于C显然,B的转置矩阵B'=C因为,转置之后对角线上的元素不变,所以,B和C的对角线

A是可逆矩阵,证明A的伴随矩阵的逆等于A的逆的伴随矩阵

由于|A|A逆=A*则(A逆)*=|A逆|(A逆)逆=A/|A|而(A*)逆=(|A|A逆)逆=(A逆)逆/|A|=A/|A|(第二个用到公式(aA)逆=A逆/a)所以两者相等

您好,请问如何证明矩阵A乘该矩阵A的转置为可逆矩阵?

这是个错误结论比如A是3*2矩阵,则AA^T是3阶方阵,其秩不超过2<3,不可逆

A矩阵*B的转置矩阵=?

不相等!如果它们相等,则有AB^T=BA^T=(AB^T)^T即此时必有AB^T是对称矩阵

刘老师你好,矩阵A的转置乘以矩阵A,其秩会等于A吗?

A是实矩阵就可以实矩阵是指A中元素都是实数不一定是对称矩阵.此时r(A^TA)=r(A)证明方法是用齐次线性方程组AX=0与A^TAX=0同解.A不一定是方阵,不一定可逆再问:如果换作A的伴随乘以A,

矩阵A的逆矩阵乘以矩阵B和矩阵B乘以矩阵A的逆矩阵 结果相等吗

A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律

矩阵A乘以A的转置等于一个常量矩阵B,怎么求矩阵A,能求出A吗?

若B为n阶Hermite正定矩阵,则存在n阶矩阵A且A为下三角矩阵,使得B等于A乘以A的共轭转置.放在实数域内就是A乘以A的转置矩阵了,其实这就是所谓矩阵的Cholesky分解.

线代题:A的伴随矩阵等于A的转置矩阵,如何证明A是可逆矩阵?

条件应该有A≠0吧.n=2时,设A=abcd则伴随矩阵A*=d-b-ca由转置A‘=A*得a=d,b=-c.当讨论限制为实矩阵,行列式|A|=a²+b²>0,A可逆.复矩阵时有反例

设n阶非零实数矩阵A满足A的伴随矩阵等于A的转置,试证A的行列式等于一,且A为正交矩阵

首先,当n>1,关于伴随矩阵的秩,有如下结果:若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;若r(A)证明:当r(A)=n,有A可逆,|A|≠0.于是由A*A=|A|·E可得

为什么矩阵A可逆,则矩阵AB的秩等于矩阵B的秩,同样,矩阵B可逆,则矩阵AB的秩等于矩阵A的秩?

A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一

已知矩阵A的逆矩阵A

因为A-1A=E,所以A=(A-1)-1.因为|A-1|=-14,所以A=(A-1)-1=2321.  …(5分)于是矩阵A的特征多项式为f(λ)=.λ−2−3−2λ−1.=λ2-

矩阵A的平方等于矩阵A,那么矩阵A有什么性质?

1.A^2=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n,又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,于是R(A)+(A

设A为n阶方阵,当An阶行列式不为0时,怎样证明A的逆矩阵的转置矩阵等于A的转置矩阵的逆矩阵

A的转置矩阵记为B、A的逆矩阵记为C、C的转置矩阵记为DAC=CA=E两边同时取转置DB=BD=E显然B(A的转置矩阵)的逆矩阵为D(C的转置矩阵)而C就是A的逆矩阵.

已知伴随矩阵求矩阵A的伴随矩阵等于[2 51 3]求矩阵A

设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-