抛物线y=x平方 bx-5与x轴交于点A和点B,与y轴交于点C,且点A的坐标为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:53:38
按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-
因为当x取-1与5时,y的值相同所以抛物线对称轴为(-1+5)/2=2对称轴x=2再问:抱歉,老师上学期教的,现在全忘光了。。麻烦问下,为什么要乘二分之一再答:取中点再问:那到底为什么要乘二分之一啊再
题的内容应是:已知直线Y=ax+k与抛物线Y=x平方+3x+5的交点横坐标为1则k=交点坐标?答:将x=1代入抛物线得,y=9,所以交点坐标为(1,9)之后将(1,9)代入直线中,就可得k了,由于你将
(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,
根据题意知道-b/2a=-1抛物线的形状与y=x平方+5相同知道a=1所以b=2抛物线与x轴的2个交点间距离为3知道y=x^2+2x+c=0的2解差为3,解解吧,很容易得到c=-5/4答案是y=x^2
将A与B两点坐标代入解析式,得-1-b+c=0-9-3b+c=0解之得,b=-4c=-3因此解析式为y=-x^2-4x-3
(-1,0),(3,0)是抛物线与x轴的交点,(-1,0)与(3,0)所连线段的中点是(1,0),对称轴经过点(1,0),对称轴方程为x=1.
它过原点,则有C=0,它与X轴有两个交点,其中一个就是原点,另一个是(-b,0)|b|=3b=3,b=-3y=x*x+3x,y=x*x-3x
(1)把两个点代入方程得-1-b+c=0-4-2b+c=-5解得b=2,c=3所以抛物线的解析式为y=-x^2+2x+3(2)方法一:若斜率不存在则x=-1,否则直线为y=k(x+1)代入抛物线方程整
y=x的平方-bxy=0,x^2-bx=0x=0,x=bA(0,0)B(b,0)y=x的平方-bx=(x-b/2)^2-b^2/4C(b/2,-b^2/4)根据三角形ABC为等腰直角三角形AB边上的高
楼上正解,为一般接法,三点知道,楼上方法通吃,此处另提供解法.交点是A(-3,0)、B(1,0)是个特殊条件,有特殊解法.法1:设f(x)=a(x+3)(x-1),C(2,5)代入得a=1,所以f(x
1)过P作PQ⊥x轴,Q为垂足则Q点坐标为(3,0)|BQ|=5-3=2所以,|PQ|=√(PB^2-BQ^2)=√(20-4)=±4a>0,开口向上,所以,P在x轴下方,所以,P点坐标为:(3,-4
由题意,抛物线经过A(-1,0)(3,0)(0,-3).所以其解析式可设为y=a(x+1)(x-3).把x=0,y=-3代入,得a=1..所以y=(x+1)(x-3)=x²-2x-3..其顶
1、对称轴一定是两个零点的中点坐标值x=(-1+3)/2=12、需要过程可以有另一种解法因为y=ax^2+bx+c与x轴的公共点是(-1,0)(3,0)所以原函数可以写成y=(x+1)(x-3)=x^
抛物线y=ax的平方+bx+c与x轴的焦点A(-3,0),B(5,0)所以函数的对称轴位x=1所以函数的顶点可能为(1,1)或(1,-1)(1)、当顶点为(1,1)时a+b+c=19a-3b+c=0-
xx2,写成集合形式!
1.因为抛物线经过点(0,-5),则抛物线为y=ax^2+bx-5.设抛物线与x轴的两交点为x1,x2,x1+x2=-b/a=-4,x1*x2=-5/a=5.解得a=1,b=4,所以抛物线的方程为y=
(1)用交点式比较简单.因为与x轴交于(1,0)(5,0)所以可设y=a(x-1)(x-5)代入点A坐标(0,3)得:3=a(0-1)(0-5)解得:a=3/5【5分之3】y=3/5(x-1)(x-5
抛物线y=-1/2x平方+bx+c与y轴的交点是(c,0),将(c,0)代入y=x-2得:c=0-2=-2y=-1/2x平方+bx+c=-1/2(x-b)的平方+b的平方/2+c=0所以抛物线顶点是(
²-4c=04-2b+c=0c=2b-4∴b²-4﹙2b-4﹚=0b²-8b+16=0﹙b-4﹚²=0b1=b2=4c=2×4-4=4∴y=x²+4x