抛物线y²=4x与椭圆x² 2y²=20的公共弦长是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:38:32
已知椭圆的中心在原点,椭圆的右焦点F2与抛物线y^2=4x的焦点重合,且经过点P(1,3/2),求椭圆的方程

F2(1,0)设椭圆方程为x²/a²+y²/b²=1(a>b>0).左焦点为F1(-1,0)则c=1,PF1=5/2,PF2=3/2.所以PF1+PF2=4.即

椭圆与抛物线的方程已知抛物线C:y^2=2px(p>0)的焦点F与椭圆(x^2)/5+(y^2)/4=1的一个焦点

椭圆:焦点在x轴上,x∧2/a∧2+y∧2/b∧2=1(其中a,b>0且a>b)焦点在y轴上,x∧2/b∧2+y∧2/a∧2=1(其中a,b>0且a>b)抛物线方程,y∧2=2px或者x∧2=2py

已知椭圆 c1 x^2/4+y^2/3=1 且其右焦点与抛物线c2 y^2=4x的焦点F重合 问

首先求出椭圆右焦点:c=√(4-3)=1,F(1,0),e=c/a=1/2;在设直线L:y=k(x-1),因L与C2须有两个交点,所以k0≠;将L代入C2:k²(x-1)²=4x,

已知抛物线C:y^2=4x,若椭圆的左焦点及相应准线与抛物线C的焦点F和准线l分别重合,求椭圆短轴端点B与焦点F的连线段

抛物线C:y^2=4x焦点F(1,0)准线l:x=-1设中点P(m,n)由中点坐标公式知端点B(2m-1,2n)则椭圆中心(2m-1,0)则可设椭圆方程[x-(2m-1)]^2/a^2+y^2/b^2

抛物线y=2x

∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

已知对称中心为原点的椭圆C1与抛物线C2:x²=4y有一个相同的焦点F1,直线l:y=2x+m与抛物线C2只有

因为直线l:y=2x+m与抛物线C2只有一个公共点,所以x2=4(2x+m)只有唯一解,所以x2-8x-4m=0只有唯一解,所以64+16m=0,所以m=-4,∴直线l的方程为:y=2x-4.

已知椭圆的中心在坐标原点0,一个焦点与抛物线y^2=4x的焦点重合,且椭圆的里心率是 根2/2 问求椭圆的...

你再算算,a当然等于根号二,那个焦点只是交代,个人做题的习惯,不写没关系的!你做题不该深究答案是怎么写的,而应该掌握答案的解题思路,至于书写格式应个人习惯而定的.

已知抛物线顶点抛物线顶点在坐标原点抛物线焦点与椭圆x²/16+y²/15=1的左焦点相同抛物线上求一

(1)设抛物线的解析式为y=kx2+a∵点D(2a,2a)在抛物线上,4a2k+a=2a∴k=∴抛物线的解析式为y=x2+a(2)设抛物线上一点P(x,y),过P作PH⊥x轴,PG⊥y轴,在Rt△GD

一道关于椭圆的题.已知椭圆的中心在坐标原点,椭圆的右焦点F2与抛物线与Y平方=4X的焦点重合.且椭圆经过点P(1,3/2

抛物线Y平方=4X的焦点为(1,0)所以在椭圆中,c=1又因为在椭圆中a^2=b^2+c^2所以a^2=b^2+1设椭圆方程为x^2/(b^2+1)+y^2/b^2=1再将点(1,3/2)带入方程,得

已知抛物线y=x^2-2与椭圆x^2/4+y^2=1有四个交点

提供一种简便计算方法:y=x^2-2x^2=y+2x^2/4+y^2=1(y+2)/4+y^2=14y^2+y=2(一式)因为四点共圆,根据图像可知圆心在y轴上,设圆心坐标为(0,p),半径为r则圆方

抛物线y^2=4x的准焦距=椭圆x^2/a^2+y^2/b^2=1的长半轴,抛物线与椭圆在第一象限的交点为B,椭圆右顶点

是让求椭圆的方程么?抛物线y^2=4x的准线与焦点间距离为p=2,因此a=2.由SOAB=1/2*|OA|*|yB|=|yB|=2√6/3,代入抛物线方程得4x=(2√6/3)^2=8/3,因此x=2

椭圆 双曲线 抛物线求曲线y^2=-4-2x上与原点距离最近的点的坐标

设圆R^2=X^2+Y^2与曲线交于A,则可列方程:R^2=X^2+Y^2Y^2=-4-2X代如于是:X^2-2X-4=R^2(X-1)^2-5=R^2因为R最小,所以R^2最小所以(X-1)^2最小

抛物线y=-5x^2+4x+7与y轴的交点坐标

抛物线y=-5x^2+4x+7与y轴的交点坐标x=0时y=7抛物线y=-5x^2+4x+7与y轴的交点坐标是(0,7)

证明椭圆x^2/a^2+y^2/b^2=1与抛物线y=x^2+cx+d的四个交点共圆.

椭圆:x^2/a^2+y^2/b^2=1.(1)抛物线:y=x^2+cx+d.(2)由(1)-(2)?/b^2-1/a^2),得x^2/b^2+y^2/b^2-c(1/a^2-1/b^2)x+(1/a

已知抛物线y^2=4x,椭圆x^2/9+y^2/m=1,它们有共同的焦点F2,椭圆的另一个焦点为F1,点P为抛物线与椭圆

显然可得:F2(1,0)所以c=1而焦点在x轴上,所以a=3所以m=8又显然可以得到抛物线的准线为x=-1以及计算可得P坐标(3/2,根号6)所以可得PF2=P到抛物线准线的距离=d=2.5再根据椭圆

已知抛物线x^2=4y与椭圆x^2/m+y^2/8=1有公共的焦点F

1、抛物线x^2=4y的焦点(0,1)在y轴正向椭圆x^2/m+y^2/8=1a^2=8b^2=mc^2=18-m=1m=7椭圆的方程y^2/8+x^2/7=12、定点A(0,3)设P(a,a^2/4