抛物线y平方等于2px的焦点与椭圆求P值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:57:22
对于抛物线y^2=2px,其焦点坐标为(p/2,0),过焦点的弦垂直于x轴时,弦的长度最短,其最小值为2p
焦点F(0.5p,0)抛物线:y^2=2px上任意一点M,MF中点P(x,y)xM+xF=2xP,xM=2xP-xF=2x-0.5pyM+yF=2yP,yM=2yP-yF=2y(yM)^2=2p(xM
设,点A坐标为(t1^2/2p,t1),点B坐标为(t2^2/2p,t2),抛物线y^2=2px,则焦点坐标为(P/2,0).令,直线AB的方程为Y=K(X-P/2),X=(Y+PK/2)/K=(2Y
当直线l经过抛物线的焦点且与x轴垂直时,直线方程为X=P/2,代入抛物线方程得y^2=P即y=√PS△ABC=1/2*AB*P/2=1/2*2√P*P/2=1/2得P=1抛物线方程为y^2=2x(2)
因抛物线上一点到F及到准线的距离相等,因MF=2p,准线X=-p/2,故M的横坐标为2p-p/2=3/2p,代入抛物线Y^2=2px,得y=±√3p即M的坐标(3/2p,√3p)及(3/2p,-√3p
第二问猜想:过椭圆焦点C的直线交椭圆于AB,求证OA*OB为定值O坐标原点证明:A=(x1,y1),B=(X2,y2)则(OA*OB)^2=(x1^2+y1^2)(x2^2+y2^2)利用y^2+x^
由题知焦点为(p/2,0),它与(-2,3)的距离为:根号下(p/2+2)^2+3^2=5,两边平方可解得p=4
利用第二定义有4+p/2=5即p=2所以E:y^2=4x设M(x1,y1)N(x2,y2)且x1
X²/3一y²=1的右焦点为(2,0)所以p=4,抛物线C:y²=16x如图,可以看出过F点垂直于l的线段就是最短距离用公式得14/5再问:我也算到这个,不知对不对再答:
设A(x1,y1),B(x2,y2),则C(-p/2,y2)设直线AB:x=ky+p/2,代入y^2=2px得y^2-2pky-p^2=0所以y1y2=-p^2,y2=-p^2/y1OA的斜率为k1=
将x=1,y=-2代入抛物线方程得4=2p,所以解得p=2,p/2=1,因此抛物线方程为y^2=4x,焦点坐标为F(1,0),设直线AB方程为y=k(x-1),代入抛物线方程得k^2(x-1)^2=4
P(2分之3,根号6)代入Y的平方=2PX6=2*P*3/2,P=2抛物线为y^2=4x焦点为(1,0)椭圆a的平方分之X的平方+b的平方分之Y的平方=1(a>b>0)令c=√(a^2-b^2),椭圆
x=0.5p,AB最小=2√p再问:�ס�����Ҫ��̣�лл��
若M到抛物线焦点的距离为6,则4+p/2=6p=4抛物线的方程为y²=2px=8x注:抛物线上点M﹙a,b﹚到抛物线焦点的距离为h=a+p/2此公式可由抛物线的定义推出﹙也就是到焦点距离等于
c^2=3+1=4c=2双曲线右焦点坐标为(2,0)抛物线焦点坐标为(p/2,0)于是得到p/2=2p=4
因为抛物线y²=2px的焦点坐标为(1,0)故高抛物线的准线方程为x=-1再答:原抛物线方程为y²=4x.再问:c(H+)
抛物线焦点F(1,0),准线为x=-1,设A(a,b)根据抛物线上点到焦点和准线距离相等知|AF|=a-(-1)=2,所以a=1,所以AF垂直于x轴,因此|BF|=|AF|=2
第一种情况,过点A的直线斜率k不存在,即x=0第二种情况,k=0,即直线y=1第三种情况,设过点A的直线为y=kx+p,与抛物线联立,得k2x2+2kpx+p2=2px使△=0,可得k=1即为y=
x=1/2的一条直线
y^2=2px焦点为F(p/2,0),准线为:x=-p/2P为抛物线上的一动点,过P作PQ//x轴交准线于Q则:PF=PQ所以,PA+PF=PA+PQ≥AQ所以,A、P、Q同一直线时,PA+PF的值最