收敛性n 2 根号n^3 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:45:48
判别级数收敛性(-1)^n(n/2n-1)

后面的括号如果不是指数的内容的话:若级数收敛,则n趋于无穷时,其通项的极限为0.而lim|(-1)^n(n/2n-1)|=1/2,所以该级数发散.lim下面的打不出来……再问:可以发图写出具体过程吗?

级数n+1分之1的收敛性

发散,与调和级数比较(用比较审敛法的极限形式).[1/n]/[1/(n+1)]的极限是1,因此这两个级数同敛散,而调和级数发散,所以这个级数发散.

2N N2 2N2

1是2个N原子2是一个氮分子中有2个N原子3是2个氮分子,其中每个氮分子中有2个N原子在化学式前的数几个分子(原子...),在化学式右下角的数为分子内部原子个数.

判断级数n!/n∧n 的收敛性

再答:你的题目是本例的特例,收敛再问:嗯嗯

判断级数+∞∑n=1 1/根号下n(n2+1)的敛散性

1/n^p级别的正项级数只要p严格大于1就是收敛,只要p等于1或者小于1就发散——这个结论不是一般都是可以直接用的吗?.1/根号(n(n^2+1))【因为n(n^2+1)=n^3+n>n^3所以1/(

判断级数收敛性2^n*n!/n^n

用根值派别法lim开n次方(u(n))=lim(2/n)开n次方(n!)=0无穷大

高数 判断级数收敛性∑(n=1到无穷)(根号(n+1)-根号n)

解:因为sn=根号(n+1)-1所以s=lim(n→无穷)sn=lim(根号(n+1)-1)不存在所以该函数收敛

1除以n阶乘的级数收敛性

比值判别法limn->无穷u(n+1)/un=1/(n+1)!/1/n!=1/n+1=0所以收敛其实这个级数的值就是e

判断级数收敛性,∑(N次根号下A) -1 A>1

应该是N取0到无穷这个值吧,由于N趋于无穷时任何大于1的数开N次方其值都接近于1,因此结果应该为0.

判断级数收敛性1/n^2-Inn

比较无穷小的阶1/n^21/(n^2-lnn)为同阶无穷小所以原级数与1/n^2敛散性相同.收敛

∞ 证明下列级数的收敛性:∑(根号下n+2 减去2倍的根号下n+1 加上根号下n) n=1

通项an=根号(n+2)-根号(n+1)-【根号(n+1)-根号(n)】分子有理化=1/【根号(n+2)+根号(n+1)】-1/【根号(n+1)+根号(n)】通分=【根号(n)-根号(n+2)】/(【

(2^n*n!)/n^n级数级数收敛性

收敛.用比值判别法.

sin(pai/n)^2求极限收敛性

这是收敛的lim(n->inf)π/n=0lim(sin(pai/n)^2)=sin(lim(n->inf)π/n)^2=0所以从结果看来,是收敛的.

证明级数收敛性如题证明收敛性..通项是,Un=1-cos(a/根号n)..级数如图.如果前辈空闲又愿意的话..顺便随便聊

1-cos(a/根号n)与a/2n等价.因此,当a=0时,当n趋于无穷大时,通项不趋于零,故级数不收敛.当a不等于0时,因∑a/2n,不收敛,所以级数不收敛.综合,可得,级数不收敛.

级数ln n/n^2的收敛性

∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛

级数(n+1)/n^2收敛性

级数的通项(n+1)/n^2>n/n^2=1/n,以1/n为通项的级数是发散的,所以根据比较判别法原级数是发散的.

根号下三次方(n+1)n^3收敛性

参考:求三次根号下N的三次方+N的平方+N+1的整数部分(N为正整数)以下用a^b表示a的b次方.=========因为n为正整数,所以n^3+n^2+n+1>n^3.所以三次根号(n^3+n^2+n

判别根号2+根号3/2+……+根号((n+1)/n)的收敛性

(n+1)/n总是大于1那么你可以想像下它的图像应该在y=x的上方那么必然不可能收敛啊只要对于每一项都是正数的多项式在n到正无穷的时候那一项的极限不是0那么肯定不可能收敛

(n^4)/n!判定级数收敛性

用比值法:limun+1/un=lim[(n+1)^4/(n+1)!]/[n^4/n!]=lim(n+1)^3/n^4=0所以收敛