数列Xn的极限等于a的充分性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:33:34
数列{Xn}中,x1=a>0,xn+1=1/2(xn+a/xn).若次数列的极限存在,且大于0,求这个极限.

设极限为x则在xn+1=1/2(xn+a/xn)两边令n趋于无穷得x=(x+a/x)/2即得x^2=a又x>0,所以x=根号(a)

一个数列极限证明题是不是:由当 n=2k-1时,Xn 的极限是a .n=2k时,Xn 的极限是a .:所以,Xn 的极限

先利用已知条件证明,X(下标2k-1),X(下标2k)是Xn的子数列.然后根据已知条件得出,此数列的奇数项子数列和偶数子数列都收敛于a,所以此数列也收敛于a,即:此数列的极限时a.查看原帖

已知数列Xn的极限为a,证明数列|Xn|的极限为|a|

由绝对值的三角不等式可以知道0≤||Xn|-|a||≤|Xn-a|由于Xn极限为a,所以不等式右侧极限为0,而不等式左侧恒为0有两边夹定理,中间的极限为0即Lim|Xn|=|a|

求数列xn=n/n+1的极限

再答:写错了,再答:再答:谢谢采纳…

怎么理解“如果数列{Xn}收敛于a,那么它的任一子数列也收敛,且极限也是a"

具体的证明可以参照教材,如果您需要,我也可以给你列出证明过程.这里不做严格证明,我觉得你可以这样理解:数列{an}极限是a,说明它每一项“越来越”接近a.那么{an}的任意一个子列,它的每一项都来自于

高数极限证明1.证明:limXn=0的充分必要条件是lim|Xn|=02.设数列{Xn}有界,limYn=0,用数列极限

很简单1、证:充分性因为lim|Xn|=0,所以任给t>0,存在正整数N,对一切n>N有-tN都有│yn│N时总有│xnyn│

证明数列X1=2,Xn+1=0.5(Xn+1/Xn)的极限存在

x(n+1)=1/2*(xn+1/xn)>=1/2*2=1xn=1时取等号即xn是大于等于1的数2(X(n+1)-Xn)=2X(n+1)-2Xn=Xn+1/Xn-2Xn=(1-Xn^2)/Xn

求证一数列是柯西数列数列Xn,已知X1=1,X(n+1)=1+1/(Xn+1)求证Xn是柯西数列 并且求出Xn的极限

∵数列{x[n]},x[n+1]=1+1/(X[n]+1)∴采用不动点法,设:y=1+1/(y+1),即:y^2=2解得不动点是:y=±√2∴(x[n+1]-√2)/(x[n+1]+√2)={(x[n

极限如题:假设无穷数列Xn有界,无穷数列Yn的极限等于0,证明Xn●Yn的极限等于0.问:这道题的关键是不是要证明Xn●

应该不需要证你说的那个等式吧(虽然在一定条件满足的情况下可能存在这样的定理).只需要从极限的定义角度证明,大致的直观思路是,n够大时,Yn可以进入0的任意小的邻域.这样,Xn有界,Xn*Yn无非是Yn

证明数列极限保序性的推论2:若limXn=a 且aN时 Xn

limXn=a任意ε>0,存在N>0,当n>N,有|Xn-a|

数列{an}满足X1=a>0,Xn+1=1/2(Xn+a/Xn),n∈N*,若数列{Xn}的极限存在且大于0,求Xn(n

X1=a>0,Xn+1=1/2(Xn+a/Xn)所以Xn>0由于极限存在且大于0设Xn的极限是A也就是n趋于无穷大Xn=A所以n趋于无穷大时X(n+1)也是A于是A=1/2(A+a/A)解出A=√a极

我们给数列xn的极限为a一个几何解释

首先要明白,这个N,是由任意给定的ε决定的,对于不同的ε,N也是不同的.比方说我给的ε比较大,那么可能从第5项起,所有的项就都在这个范围内了.可以自己画个图呀,很容易就理解了.

证明Xn=/1n^2的数列极限等于0

任取e>0,我们要做的是让(1/2^n)1/e,下面求出n就行了,不用很精确,可以适当放大n方便一点.

数列{xn}的奇数项子列与偶数项子列收敛于同一个极限a,求证{xn}收敛于a.

应该是2n>N1和2n-1>N2,而不是n>N1和n>N2.不影响结果.

1.数列Xn的极限为a 求证Xn的绝对值极限为a绝对值.2.举例说明Xn的绝对值有极限,

2、Xn=(-1)^n,则|Xn|=1极限存在,Xn极限不存在.3、由Xn有界,存在M>0,使对所有Xn,有|Xn|0,存在N,当n>N时,有|Yn|

数列的极限对于数列{Xn},Xn的极限是a,求证X2n的极限是a,X2n+1的极限是a

由题知lim(n→∞)Xn=a也即:Xn是收敛数列根据定理:收敛数列的任何子列都收敛,且极限相同可知:X(2n)与X(2n+1)都收敛且极限为a这个是最快的证明方法,利用一条定理即可要严格证明也是可以

数列的极限定义里|Xn-a|

就是扎堆的意思,给个筐,无论多小,筐外的都只有有限多.