最简形和等价标准型矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:59:23
什么是矩阵的标准型和阶梯型.

标准型要求梅行第一个不为零的数为一,且跟一同列的其他数都为零再答:阶梯型只要是一个阶梯壮就可以了再问:那最简型呢再答:哦哦,不好意思,我说的标准型是最简型再答:标准型在这再答:再问:看不清-_-||再

求矩阵等价标准型,如题,求详细步骤

下面的说明比较详细了,哪一步不明白?再问:就是转换的过程,求详细步骤再答:过程不是有了?你要什么"过程"?再问:它的过程不够详细,能不能把第二部转化成数字给我看一下,比如利用a11=1,怎么把其他元素

求大神求矩阵的等价标准型

你这是用行变换化成了行最简形若继续化等价标准形,必须用列变换c3+c1+c2c5-4c1-3c2+3c4

线代求矩阵的等价标准型,_.)

20-1312-24013-1r2-2r3,r1-2r20015-910-86013-1r1*(1/15)001-3/510-86013-1c3+8c1,c4-6c1001-3/51000013-1用

同阶矩阵A与B等价,当且仅当秩相等时,它们有相同的标准型?

因为A,B同阶,所以它们的标准形为Er(A)000和Er(B)000所以当且仅当秩相等时,它们有相同的标准型.注意,这里不需要A,B等价

什么是矩阵的等价标准型?

如果矩阵B可以由A经过一系列初等变换得到那么矩阵A与B是等价的经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型.

线性代数求等价标准型和矩阵的秩 区别

等价标准形:左上角为单位矩阵其余全是零行列变换都可用非零行数即矩阵的秩但若只求矩阵的秩仅用初等行变换化为梯矩阵就行了,列变换也可用,但行变换足够非零行数即矩阵的秩

矩阵乘以一个数和矩阵等价的问题

等价矩阵的定义:存在可逆矩阵P、Q,使PAQ=B,则矩阵A与矩阵B等价通俗地说:若矩阵A可以通过初等变换得到矩阵B,则矩阵A与矩阵B等价初等变换包括初等行变换与初等列变换,矩阵的初等行(列)变换包括三

向量组等价和矩阵等价的一道选择题

向量组的等价比矩阵的等价要求要高向量组等价则秩相同,反之不对矩阵等价秩相同,由此知B组的秩为m

将一个矩阵变换为它的等价标准型,有没有什么简便方法?

行列同时使用应该比较快的.如果你不太熟悉我建议你这样做:第一步:先利用行变换把矩阵变成行最简形第二步:再使用列变换将每一非零行的首非零元所在的行的其余元素化为零第三步:适当的交换各列的位置使其左上角称

请问一下矩阵的等价标准型是怎样的?可以的话举几个例子!

等价标准形即左上角是单位矩阵,其余元素都是0的矩阵如100001000010如100001000000

向量组等价和矩阵等价有什么不同

两个矩阵A,B等价表示,A可经过有限次初等变换变成B 向量组等价表示,两个向量组可以相互表出 具体分析如下图: 再答:不客气,谢谢采纳

线性代数:向量组等价和矩阵等价的区别?

如果两个向量组可以相互线性表出那么他们就是等价的如果矩阵B可以由A经过一系列初等变换得到那么矩阵A与B是等价的

关于对角矩阵和jordan标准型

一个矩阵A的特征多项式的根的代数重数恒大于等于他的几何重数.根据特征多项式可以写出Jordan矩阵.矩阵A相似于对角形矩阵的充要条件是A的特征多项式的根的代数重数等于他的几何重数.所以即使有重根也没有

用矩阵的初等变换,求 A=(-2 -1 -4 2 -1 ) 矩阵的等价标准型

-2-1-42-1306-1103001c2-3c5-22-42-13-36-1100001r1+r3,r2-r3-22-4203-36-1000001r1+2r2,r2*(-1)4-4800-33-