来自总体卡方分布x²(10)的样本

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:01:59
设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

卡方分布如何求自由度设X1,X2,X3,X4是来自正太总体N(0.4)的简单随机样本,X=a(X1-2X2)^2+b(3

自由度肯定是2,就是可以转化成两个标准正太分布的平方之和,a,b都是来让后边的两个分布都等于标准正太分布的.再问:我自己已经做出来了,不过分还是给你好了……

数学 概率论与数理统计 抽样分布(正态总体的样本方差的分布) 卡方分布

Xi-X拔不独立,把X拔展开成1/n∑xi,提取公共的Xi部分,然后你就会发现是n-1个标准正态分布的平方和了.

设总体x的分布函数为f(x),概率密度函数为f(x),(x1,x2…xn)是来自总体x的一个样本,x(1)和x(n)分别

X(1)f1(x)=n*(F(x))^(n-1)*f(x)F1(x)=(F(x))^nX(n)fn(x)=n*(1-F(x))^(n-1)*f(x)Fn(x)=(1-F(x))^n其中f(x)F(x)

【概率论】X1,X2,X3...X9来自正态总体x的随机样本

这个i是不是7到9啊?因为X1到X9~N(0,1)所以Y1=1/6(X1+...+X6)~N(0,1/6)这个知道吧就是1/n∑xi~N(μ,σ^2/n)Y2~N(0,1/3)推出√2*(Y1-Y2)

概率论大数定理设总体X服从参数为2的泊松分布、X1,X2`````Xn为来自总体X的一个样本,则当n→∞,Yn=1/n(

Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服

设总体X服从参数为λ的普阿松分布(泊松分布),它的分布律为:

首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取

已知总体X的概率分布为P(X=i)=1/3,i=1,2,3.(X1,X2,X3)为来自X的样本,求E[x(1)],D[x

首先题目的意思是123三个数字,每个数字出现的可能性是一样的.然后现在是三个数字弄排列组合成一个三个数字组成的数组.那么用树状图就可以得出一共有27种组合的方式.E(X(1))的意思是求最小的那个数的

X服从自由度为3的卡方分布 ,从总体中抽取n个样本,为什么 X1+X2+X3服从自由度为9的卡方分布

是这样子的,X服从于自由度为3的卡方分布,则有X=x1^2+x2^2+x3^2从X里抽出三个样本,则X1,X2,X3都有上面X=·····的表达式.根据卡分分布的可加性,3*3=9.则有,X1+X2+

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设X1,X2……Xn为来自总体(10)的简单随机样本,则统计量服从的分布为(

样本均值的期望等于总体期望,此题中为np样本方差的期望等于总体方差,此题为np(1-p)所以t的期望等于np-np(1-p)np(1-p)

设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为

样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

设 X1,X2,X3.Xn为来自总体 X的样本,已知总体的分布密度函数为:[f(

亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!

期望方差题已知X服从泊松分布P(r),X1,X2,...Xn为来自总体X的一个样本,S^2为样本方差,求E(S^2).请

我来解!首先你要搞清楚s^2是个什么东西!第二你要搞清楚方差的概念!s^2就是方差!定义就是2阶中心距!2阶中心距=E(x-E(x)^2)=∑xE(x-E(x)^2)那么也就等与D(x)换句话说就是求

请问卡方分布的样本均值服从什么分布,用来计算总体均值置信区间.

总体均值的区间估计:当总体方差σ已知的时对于给定的置信度1-α(本题为95%,α=0.05)则的置信区间为(X-(σ/√n)Zα/2,X(σ/√n)Zα/再问:你确定是服从正态分布?还有,为什么左边是

设总体X服从自由度为m的伽方分布,(X1,X2...Xn)是其中一个样本,求样本均值的密度函数

1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&

卡方分布的逆推设X1,X2,……Xn是来自总体N(0,1)的样本,则统计量χ²=X1²+X2

主要涉及更高的概率论,测度论,坏的类型,在这个粗略的告诉我首先构建在R的概率测度P1(N(0,1)分布),无论是A属于B(R),这样的P(A)=N(01)在A点的密度,概率空间(R,B(R),P1)从