某厂商的短期总成本函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:23:13
某完全竞争厂商的短期总成本函数为STC(Q)=Q3-6Q2+30Q+60假设产品价格为30元

MC=3Q²-12Q+30,令MC=MR,即3Q²-12Q+30=30,解得Q=4,即利润最大化产量.STC=4³-6×4²+30×4+60,TR=30×4=1

假定某厂商的短期总收益函数为TR=100Q-Q²,求该厂商面临的市场需求函数

总收益tr=100q-q^2,单价就为100-再答:单价就为100-q,因此需求函数为p=100-q

某完全竞争厂商的短期总成本函数为 TC(Q)=Q3-14Q2+69Q+128 ,求厂商的短期供给函数.

由STC可得TVC=Q3-14Q2+69Q,SMC=3Q2-28Q+69,AVC=Q2-14Q+69.因为短期供给曲线是SMC曲线上大于和等于AVC曲线最低点的部分,则SMC=AVC可得Q=7.所以S

某完全竞争厂商的短期总成本函数为TC(Q)=Q3-14Q2+69Q+128,求厂商的短期供给函数.

由STC可得TVC=Q3-14Q2+69Q,SMC=3Q2-28Q+69,AVC=Q2-14Q+69.因为短期供给曲线是SMC曲线上大于和等于AVC曲线最低点的部分,则SMC=AVC可得Q=7.所以S

-已知某厂商的短期总成本函数是STC(Q)=0.04Q*Q*Q-0.8Q*Q+10Q+51.指出该函数中可变成本和不变成

1、可变成本:0.04Q^3-0.8Q^2+10Q不变成本:52、TVC(Q)=0.04Q^3-0.8Q^2+10QAVC(Q)=TVC(Q)/Q=0.04Q^2-0.8Q+10AFC(Q)=5/QM

某完全竞争厂商的短期总成本函数为TC=20+2Q+Q2,求产品价格P=6时,最大化利润是多少?

利润最大化mr=mc因为是完全竞争所以mr=pmc=2q2,q=1.5,利润最大化时的利润=收入-成本,结果自己算吧..

一道西方经济学的题目在一个完全竞争市场上,如果某个厂商的短期总成本函数为STC=0.1Q*3-2.5Q*2 20Q 10

应该是这样的吧.需求价格弹性系数Ed=—(△Q/Q)╱(△P/P)=÷=1这里需求量和价格的变动率刚好相等,属于单一弹性.为什么要用弧弹性呢?这种变化线性为一条直线,没有弧.弧弹性ε=(ΔQ/Q)/(

1.已知某厂商的短期总成本函数是STC(Q)=0.04Q 3 -0.8Q 2 +10Q+5,求最小的平均可变成本值.提示

我只能给你做两道题,因为这么多题目太花时间了,其余的你自己做吧.这些题目都是非常简单的题目,自己练练也好.有什么难题可以加我QQ:77970217,但我不希望你什么问题都依赖别人.另外,我建议你今后问

关于微观经济学计算麻烦高手解决一下..已知某垄断厂商的短期总成本函数为STC=0.6Q2+3Q+2,反需求函数

由反需求函数为P=8-0.4Q得到利润函数曲线为P=8-0.8Q而单位成本(即供应曲线)为STC/Q=0.6Q+3+2/Q两条曲线的交点就是该垄断厂商短期内选择生产量的位置此时均衡产量=Q=3.1(另

已知某垄断厂商的短期总成本函数为STC=0.1Q3-6Q2+140Q+3000,反需求函数为P=150-3.25Q.

MC=STC′=0.3Q²-12Q+140MR=d(PQ)/dQ=150-6.5QMC=MR=>0.3Q²-5.5Q-10=0Q=20因此均衡产量为20均衡价格为P=150-3.2

已知某完全垄断厂商的短期总成本函数为STC=0.1Q3-6Q2+140Q+300,反需求函数为P=150-5Q.1) 求

由STC,解的MC=0.3Q^2-12Q+140.由P=150-5Q得TR=150Q-5Q^2,得MR=150-10Q.均衡时MC=MR,解得Q=10.2、Q=10时,解得P=1003.利润π=TR-

垄断厂商的短期总成本函数为STC=0.1Q3-6Q2+140Q+3000,反需求函数为P=150-3.25Q.求:该垄断

(P=a-bQ)均衡条件:MR=SMC即a-2bQ=SMC,SMC=d(STC)/dQ=0.3Q^2-12Q+140=MR=150-2*3.25Q得到Q=20

完全竞争厂商的短期成本函数为STC=0.1Q3(3次方)-2Q2+15Q+10,试求厂商的短期供给函数

AVC=0.1Q²-2Q+15短期供给函数是MC在AVC以上的部分,所以,P=0.3Q²-4Q+15(P>=5)

完全竞争厂商的短期成本函数为STC=0.1Q^3-2Q^2+15Q+10,试求厂商的短期供给函数.

(1)完全竞争短期均衡时有MC=P,即MC=0.3Q(平方)+4Q+15=55得Q=利润=PQ-STC=……(2)厂商停产的条件是P小于平均可变成本SFC=STC-10(也就是去掉常数项,常数项是固定

某完全竞争的厂商的短期总成本函数为TC=20+2Q+Q2.求,产品价格P=6时,利润最大化时的TC.VC.FC.AC.A

TC=20+2Q+Q*Q可得MC=2Q+2根据完全竞争厂商实现利润最大化原则P=MC可得2Q+2=6Q=2TC=20+2*2+2*2=28VC=2*2+2*2=8FC=20AC=14AVC=4AFC=

完全竞争厂商的产品价格和总成本函数分别为:

完全竞争厂商利润最大化的条件是MR=MC=P.TC=1500-10Q+0.5Q^2,MC=Q-10,令MC=P,即Q-10=80,Q=90利润=P*Q-TC=2550

已知某垄断竞争厂商的短期成本函数为TC=0.6Q*Q+3Q+2

好的反需求函数为P=8-0.4Q.求该厂商实现利润最大化时的产量、法1;maxπ=P*Q-C(收益减成本)maxπ=(8-0.4Q)*Q-(0.6Q^2+3Q+5)=8Q-0.4Q^2-0.6Q^2-

某完全竞争厂商的短期成本函数为TC=0.04 Q3-0.8Q2+10Q+5,

利润最大时的条件是P=MC,MC=dTC/dQ=0.12Q^2-1.6Q+10,P=26,所以26=0.12Q^2-1.6Q+10,解得Q=20利润π=P*Q-TC=20*26-0.04*20^3+0

完全竞争行业中某厂商的短期成本函数为STC=Q3-4.5Q2+30Q+100.

MC=STC'=3Q^2-9Q+30利润最大化条件MR=P=60=MC3Q^2-9Q+30=60Q^2-3Q-10=0Q=5利润π=PQ-STC=5*60-(125-4.5*25+150+100)=1