dx dy-2y (x+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:18:02
原式=∫[0,2π]dθ∫[0,1]√(1-r²)/(1+r²)rdr(极坐标变换)=π∫[0,1]√(1-r²)/(1+r²)d(r²)令u=r
T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤
答:设极坐标x=cosθ,y=sinθ,1
pi*(pi/2-1)
1,在D上的二重积分∫∫f(x,y)dxdy的几何意义是,以D为底,以曲面z=f(x,y)为顶的曲顶柱体的体积,本题中根据被积函数和积分区域,可以看出这个积分表示球体x^2+y^2+z^2=1在第一卦
我来回答吧:1),因为D是矩形区域,0
原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^
先画出积分区间,显然y=1/x和y=x的交点是(1,1)那么x的积分区间是(1,2)于是原积分=∫(1到2)3xdx*∫(1/x到x)1/y²dy=∫(1到2)3xdx*(-1/y)代入y的
x=rcosθy=rsinθ∫∫(D)arctany/xdxdy=∫∫(D')arctan(sinθ/cosθ)rdrdθ其中D':1
第一题的积分区域没写清楚,无法做.第二题先画图,然后知道所求的结果可以写为:2*[∫(1-x*x/4)dx-∫(1-x*x)dx]前面定积分的下限是0,上限是2.后面的定积分的下限是0,上限是1.这样
积分区域是图中橙色部分与蓝色部分合起来,现作辅助线y=-x³,将区域分为橙色与蓝色两部分∫∫x(1+yf(x²+y²))dxdy=∫∫xdxdy+∫∫xyf(x²
换元法x=rcosax^2+y^2≤1所以0
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
楼上前一个积分算错了,这不是上半球面.我的答案:如有不懂,再问:您的问答我看懂了。不好意思,还有到类似的问题,不知道能否请您帮我解答下:曲面积分∫∫(y^2-x)dydz+(z^2-y)dzdx+(x
x^2+y^2=x+y化成标准式(x-1/2)^2+(y-1/2)^2=1/2x=1/2+rcosαy=1/2+rsinαα∈[0,2π]r∈[0,√2/2]∫∫(x+y)dxdy=∫∫(1+rcos
I = ∫∫ (1 + xy)/(1 + x² + y²) dxdy,D&nbs