根号下1-x^2-y^2的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:11:39
求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s
这类题的关键在于画出函数的积分区域,也就是x≤y≤根号π,0≤x≤根号π画出直线y=x,那么积分区域是他于y轴,y=根号π围成的三角形,如果先对x积分,那么就是先从0到y积,然后在0到根号π积
注意ρ代表积分变量而R是积分限,所以在ρ的积分表达式中应该是关于ρ表达式而不是关于R的,所以最后一个ρ的积分应该是∫(sinρ/ρ)ρ^2dρ,积分限都是正确的.所以应该是∫dθ∫sinφdφ∫ρsi
[(2/3)x√(9x)+6x√(y/x)]+[y√(x/y)-x²√(1/x)]化简:原式=[(2/3)*3*x√x+6√(xy)]+[√(xy)-x√x]=2x√x+6√(xy)+√(x
令t=√(x^2-9),t^2=x^2-9,2tdt=2xdxtdt=xdx积分号下:√(x^2-9)dx/x=√(x^2-9)xdx/x^2(分子分母同乘以x)=t*tdt/(t^2+9)=t^2d
∫根号(1+1/x^2)dx=∫根号(x^2+1)/xdx令t=根号(x^2+1)x=根号(t^2-1)dx=t/根号(t^2-1)dt=∫t/根号(t^2-1)*t/根号(t^2-1)dt=∫t^2
∫(x+2)dx/√(x+1)=∫(x+1+1)dx/√(x+1)=∫√(x+1)dx+∫dx/√(x+1)=(2/3)(x+1)^(3/2)+2√(x+1)+C再问:=∫(x+1+1)dx/√(x+
可用变量代换求解,如图.
既要换元,又要分部,还涉循环积分.初学者有难度.
负二分之一积分号根号下(1-x∧2)d(1-x∧2)再答:可懂了?再问:负二分之一是怎么求的?再答:d(1-x∧2)再答:变成-2xdx再答:而原来只有xdx再答:所以提取-1╱2再问:再答:再答:亲
原式=∫1/(1-x)(1+x)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln|1-x|+ln|1+x|]+c=1/2ln|(1+x)/(1-x)|+c啊,原来有根号啊应该是ar
∫1/((x+1)^0.5+(x+1)^1.5)dx=∫1/((x+1)^0.5+(x+1)^1.5)d(x+1)=∫1/((x+1)^0.5(1+(x+1))d(x+1)=∫1/((x+1)^0.5
∫(x/√(x^2-1)dx=1/2∫[1/√(x^2-1)]d(x^2)=1/2∫[1/√(x^2-1)]d(x^2-1)=1/2∫[1/√y]dyc=(1/2)*c'=√x^2-1+c
y=ln[x+√(1+x²)]x+√(1+x²)=e^y1+x²=(e^y-x)²1+x²=e^2y-2xe^y+x²x=(e^2y-1)/
我认为问题是不是要乘r.即对[(1-r'2)/(1+r'2)]开方后再乘r.然后再求积分?这样二重积分结果为:{(pai)'2-2*pai}/8.不知是否正确?(pai是圆周率)
再问:导数第三步那里我没化回sint的形式直接把x=arcsinx反带可以吗?再答:可以