D由抛物线y^2=3x 2与直线x=2围城,求Ix

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:43:54
直线y=2x+2与抛物线y=x2+3x的交点坐标为______.

∵由题意得y=2x+2y=x2+3x,解得x=−2y=−2或x=1y=4,∴直线y=2x+2与抛物线y=x2+3x的交点坐标为(-2,-2),(1,4).故答案为:(-2,-2),(1,4).

直线y=x+2与抛物线y=x2+2x的交点坐标是______,______.

联立两函数的解析式有:y=x+2y=x2+2x,解方程组,得x=1y=3,x=−2y=0;则直线y=x+2与抛物线y=x2+2x的交点坐标是(1,3),(-2,0).

如图所示,抛物线y=x2与直线y=2x在第一象限内有一个交点A.

(1)解方程组y=x2y=2x得x=0y=0或x=2y=4,所以A点坐标为(2,4);(2)存在.作AB⊥x轴于B点,如图,当PB=OB时,△AOP是以OP为底的等腰三角形,而A(2,4),所以P点坐

抛物线y=x2与直线x+y=2所围图形的面积______.

由y=x2y=2−x得x2+x-2=0,解得:x=-2,x=1,故积分区间[-2,1],当x∈[-2,1]时,直线x+y=2在抛物线y=x2的上方,故抛物线y=x2与直线x+y=2所围成的图形的面积S

抛物线y=x2-2x-3与x轴交于A、B两点(A在B左侧),D为抛物线顶点,直线y=x+1与抛物线交于A、C两点。 (1

解题思路:本题目主要考查一次函数和二次函数的联用,以及三角形的面积等知识。解题过程:

求由抛物线y=1/4x2 与直线3x-2y=4所围成的图形的面积(1/4X2应当为4分之1X的平方)谢谢各位了,急,

两曲线交于点(2,1)和(4,4)(这个你自己会吧)只需用3x-2y=4与直线x=2,x=4和x轴的面积减去y=1/4x^2与直线x=2,x=4和x轴的面积就可以了要是学过积分这个题就更好解了.

已知直线y=2x+4与x轴、y轴分别交于A、D两点,抛物线y=-1/2x2+bx+c经过点A、D,点B是抛物线与x轴的另

A(-2,0)D(0,4)  -2-2b+c=0  c=4b=1(1)这条抛物线的解析式:y=-1/2x^2+x+4B(4,0)(2)∵S△AOM:S△OMD=1:3∴点M的坐标(-2+2/4,4/4

直线y=2x+m与抛物线y=-x2+3x+4的交点个数如何?

将直线y=2x+m代入抛物线y=-x2+3x+4,得2x+m=-x^2+3x+4=>x^2-x+m-4=0△=1-4(m-4)=17-4m若m>17/4,则△17/4,则△>0,方程有两个不同的解,有

如图,过抛物线x2=4y焦点的直线依次交抛物线与圆x2+(y-1)2=1于点A、B、C、D,则|AB|×|CD|的值是(

方法一:特殊化,抛物线x2=4y的焦点是F(0,1),取过焦点的直线y=1,依次交抛物线与圆x2+(y-1)2=1的点是A(-2,1)、B(-1,1)、C(1,1)、D(2,1),∴|AB|×|CD|

求由抛物线y=x2和直线y=x+2所围城的平面图形的面积

如图所示:所围城的平面图形的面积的近似值=4.47

抛物线y=x2+2x,直线y=3与抛物线相交于a,b,p是x轴上一点,若pa+pb最小

如图,A'为A关于x轴对称点,PA=PA',要使PA+PB最小,则AB为直线,P为AB与x轴交点.A、B点坐标易求得A(-3,3)、B(1,3),则A‘(-3,-3),AB方程y=3/

已知,抛物线y=x2和直线y=3x+m都过a(2,n),求抛物线与直线另一交点

将点A带入抛物线n=2^2=4所以A(2,4)再将A带入直线求出m=y-3x=4-6=-2所以直线y=3x-2联立抛物线和直线x^2=3x-2x^2-3x+2=0x1=1,x2=2所以另外一个交点等横

已知抛物线y=x2与直线y=3x+b只有一个交点,则b值为

y=x²=3x+bx²-3x-b=0只有一个交点则方程只有一个解所以判别式为09+4b=0b=-9/4

直线y=3x+4与抛物线y=x2的交点坐标为

3x+4=x2解方程得:x=4或x=-1x=4时,y=16x=-1时,y=1交点坐标为(4,16)(-1,1)

已知抛物线方程x2=4y,圆方程x2+y2-2y=0,直线x-y+1=0与两曲线顺次相交于A、B、C、D,则|AB|+|

已知抛物线方程x2=4y,圆方程x2+y2-2y=0,直线x-y+1=0与两曲线顺次相交于A、B、C、D,则|AB|+|CD|=很明显x^2+y^2-2y=0 x^2+(y-1)^2=1&n

直线y=3x-3与抛物线y=x2-x+1的交点的个数是(  )

∵直线y=3x-3与抛物线y=x2-x+1的交点求法是:3x-3=x2-x+1,∴x2-4x+4=0,∴x1=x2=2,∴直线y=3x-3与抛物线y=x2-x+1的交点的个数是1个.故选B.

求抛物线y=x2-x-6与直线y=3x-2的交点坐标?

3x-2=x^2-x-6x^2-4x-4=0x=2+2倍根号2,x=2-2倍根号2,然后把x的值代入任何一个公式计算就是纵坐标的值,

(2014•松北区一模)如图,抛物线y=-x2+bx+c与直线y=12x+2交于C、D两点,其中点C在y轴上,点D的坐标

(1)在直线解析式y=12x+2中,令x=0,得y=2,∴C(0,2).∵点C(0,2)、D(3,72)在抛物线y=-x2+bx+c上,∴c=2−9+3b+c=72,解得b=72c=2.∴抛物线的解析