E F G 分别是AO BC 中点 连接EF EG EF=EG AC=2CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:50:48
在正方体ABCD-A'B'C'D'中E、F、G分别是AB、BC、AA'的中点.求证:B'D垂直于平面EFG.

证明:∵BB'⊥平面ABCD,EF⊂平面ABCD∴EF⊥BB'∵四边形ABCD是正方形,E、F是AB、BC的中点∴AC⊥BD,EF∥AC∴EF⊥BD∵EF⊥BB',EF⊥BD,BB'

已知:在四边形ABCD中,AD=BA,E、F、G分别是BD、AB、DC的中点.求证:△EFG是等腰三角形

应该是AD=BC吧,要不然你这道题没法做啊.∵E为BD中点,F为AB中点∴EF为△ABD的中位线(三角形中位线定义)∴EF=1/2AD(三角形中位线等于第三边的一半)∵E为BD中点,G为CD中点∴EG

如图1,四边形ABCD中,点E、F、G、H分别为边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到四边形EFG

四边形EFGH是平行四边形证明:因为AB、BC、CD、AD的中点分别是E、F、G、H,所以EF、GH分别是是三角形ABC和ADC的中位线根据中位线性质得:EF//AC,EF=AC/2,GH//AC,G

在正方体ABCD——A1B1C1D1中,E,F,G,分别是 AB,BC,AA1,中点.求证B1D垂直面EFG.

AC垂直BDAC垂直BB1AC垂直面BDB1AC垂直B1DAC//EFEF垂直B1D同理EG垂直B1DB1D垂直面EFG

2、已知:在四边形ABCD中,AD=BC,E,F,G,分别是BD,AB,DC的中点 求证:△EFG是等腰三角形

证明:EFG分别是BDABDC的中点,由中位线定理知:FG=0.5ADEG=0.5AB因为AD=AB所以EG=FG所以EFG是等腰三角形所以得证!

已知:在四边形ABCD中,AD=BC,E,F,G,分别是BD,AB,DC的中点 求证:△EFG是等腰三角形

证明:∵E是BD的中点,F是AB的中点∴EF是△ABD的中位线∴EF=½AD∵E是BD的中点,G是CD的中点∴EG是△BCD的中位线∴EG=½BC∵AD=BC∴EF=EG∴△EFG

已知:如图,在△ABC中,AB,BC,CA的中点分别是点E,F,G,AD是高.求证:∠EDG=∠EFG

FE和FG为△ABC的中位线,故FE=AC/2,FG=AB/2;DE和DG分别为Rt△ADB和Rt△ADC斜边上的中线,故DE=AB/2,DG=AC/2.得FE=DG,FG=DE.又EG为共同边,则△

如图,在四边形ABCD中,AB=CD,E、F、G分别是BD、AC、BC中点,求证:△EFG是等腰三角形

在△ABC中,∵F、G分别是AC、BC中点,∴FG是中线,∴FG=½AB,同理:EG=½CD,而AB=CD,∴FG=EG,∴△EFG是等腰△.

如图,空间四边形ABCD中,E,F,G分别是AB,BC,CD的中点,求证:⑴BD//平面EFC,⑵AC//平面EFG.

在三角形BCD中,F、G,分别是BC、CD的中点,所以BD//FG,且BD不在平面EFG上,所以BD//平面EFG;同理可证AC//EF,得AC//平面EFG线面平行的判定定理:平面外的一条直线与平面

如图,空间四边形ABCD中,E,F,G,分别是AB,BC,CD的中点,求证:(1)BD//干面EFG;(2)AC//平面

1,容易证明BD//FG且BD不在平面EFG上,所以BD//平面EFG2,AC//EF,同理平面外一条直线与平面上一条直线平行,则平面外直线平行于这个平面

如图,空间四边形ABCD中,E,F,G分别是AB,BC,CD的中点,求证:(1)BD//平面EFG;(2)AC//平面E

在三角形BCD中,F、G,分别是BC、CD的中点,所以BD//FG,所以BD//平面EFG;同理可证AC//EF,得AC//平面EFG

在梯形ABCD中,AD//BC,点E,F,G,H分别是AD,AB,BC,CD的中点,连接EF,FG,GH,HE.若EFG

连接AC,BD.因为点E,F,G,H分别是AD,AB,BC,CD的中点.所以FH=GH=1/2BD,GE=HE=1/2AC.(三角形中位线定理).因为EFGH是菱形,所以FE=EH=HG=GF.所以A

在三角形ABC中,AB,BC,CA的中点分别是E,F,G,AD是高.求证:角EDG=角EFG.

连接EG∵AB、BC、CA的中点分别是E、F、G∴EF=½AC,FG=½AB∵AD是高∴⊿ABD,⊿ACD是直角三角形∴DE=½AB,DG=½AC∴DE=FG,

空间四边形abcd中,e,f,g,分别是ab,bc,cd的中点,求证:(1) bd//平面efg (2) ac//平面e

证明:在三角形DBC中,FG是中位线所以有:FG//BD又FG属于面EFG所以,BD//面EFG.(2)同上,EF是三角形ABC的中位线.所以,EF//AC.EF又在面EFG中所以,AC//面EFG

正方体A1B1C1D1-ABCD中E,F,G,分别是AB,AD,AA1的中点.求证AC1垂直于平面EFG.

连接AD1和AB1以及A1D和A1B根据正方体的性质D1C1⊥A1D,A1D⊥AD1则A1D⊥△C1D1A则有A1D⊥AC1又F,G为AD,AA1中点FG‖A1D所以FG⊥AC1同理GE⊥AC1所以A

如图,△ABC中,E、F、G分别是AB、BC、CA边的中点,AD是高,求证:∠EDG=∠EFG.

平行四边形AEFGEFG=EAGADB=90AE=BEDE=EAEAD=EDA同理AG=DGDAG=GDAEAG=EDG=EFG

在四边形ABCD中,AD=BC,E、F、G分别是BD、AB、DC的中点.求证:三角形EFG是等腰三角形

证明:EFG分别是BDABDC的中点,由中位线定理知:FG=0.5ADEG=0.5AB因为AD=AB所以EG=FG所以EFG是等腰三角形

如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△EFG是等腰三角形.

证明:∵E,F,G分别是AB,CD,AC的中点.∴GF=12AD,GE=12BC.又∵AD=BC,∴GF=GE,即△EFG是等腰三角形.

已知如图:在△ABC中,AB、BC、CA的中点分别是E、F、G,AD是高.求证:∠EDG=∠EFG.

证明:连接EG,∵E、F、G分别是AB、BC、CA的中点,∴EF为△ABC的中位线,EF=12AC.(三角形的中位线等于第三边的一半)又∵AD⊥BC,∴∠ADC=90°,DG为直角△ADC斜边上的中线