e-ab是可逆矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:51:10
因为A可逆,所以有A^-1(AB)A=BA所以ABBA(相似)
C=(E+AB)^(-1)(E-BCA)(E+BA)=E-BCA+BA-BCABA==E+B[-C+E-CAB]A=E+B[E-C(E+AB)]A=E==>E+BA可逆,且(E+BA)^(-1)=E-
可以用矩阵运算如图凑出E-BA的逆矩阵.经济数学团队帮你解答,请及时采纳.再问:有没有简便的方法啊?再答:如果要求出逆矩阵,只能这样做。若只是证可逆,还可用公式|E-BA|=|E-AB|,行列式非零,
反证,若E-BA不可逆,则存在X不为0,使(E-BA)X=0(方和有非零解)->X=BAX,则(E-AB)AX=AX-ABAX=AX-AX=0也即(E-AB)Y=0有非零解(其中Y=AX),与题设矛盾
AB=E如果A(或B,实际上只要有一个另一个一定是)是方阵的化,那么A,B都可逆互为对方的逆.另外可逆很多充要条件.行列式不等于0AB=BA=E方阵时AB=E满秩方阵可以经过初等变换得到单位矩阵等等.
这个问题有很多证法,反证法可以说是不太好的选择,因为你不易看到背后隐藏的东西.当然,如果一定要反证法,那么也容易如果E-BA不可逆,那么存在非零向量x使得(E-BA)x=0,左乘A=>(E-AB)(A
AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB
由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.
设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).
只要验证(E+BA)*{E-B*[(E+AB)-1]*A}与{E-B*[(E+AB)-1]*A}*(E+BA)都是单位阵E就行了.(E+BA)*{E-B*[(E+AB)-1]*A}=(E+BA)-(E
我们发现这题的条件比较少,所以考虑用反证法假设E-BA不可逆,就是|E-BA|=0这样一来,(E-BA)x=0就有非零解.所以我们设α是一个非零解,然后把它(或者另外一个非零解)带入(E-AB)x=0
记号:[A,B;C,D]表示2X2分块矩阵,第一行块为A,B,第2行块为C,D.考虑[E-AB,0;B,E],将其第二行块左乘A加到第一行块得[E,A;B,E],再将第一行块左乘-B加到第2行块得到[
AB+B=A(A+E)B=A+E-E(A+E)-(A+E)B=E(A+E)(E-B)=E所以A+E是可逆矩阵(A+E)(E-B)=(E-B)(A+E)=EA-AB+E-B=A+E-BA-BAB=BA
证明:[(E+AB)^-1A]^T^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)另外,题中:A+B都是n阶对称矩阵.不对吧,应该是A和B都是n阶对称矩阵[(E+AB)^
证:因为(E-BA)[E+B(E-AB)^-1A]=E-BA+B(E-AB)^-1A-BAB(E-AB)^-1A=E-BA+B(E-AB)(E-AB)^-1A=E-BA+BA=E.所以E-BA可逆,且
完全可以.因为逆矩阵就是这么定义的,前提A,B都是方阵,如果不是的话不行
因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能
可以.因为AB=E,所以|A||B|=|AB|=|E|=1.所以A的行列式不等于0,故A可逆.且A^-1=A^-1E=A^-1AB=B.满意请采纳^_^
只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A