excel 求抛物线定点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:48:06
已知定点A(-6,0),Q是抛物线y=x方+2上的一个动点,求线段AQ的中点P的轨迹方程

设为P(x,y),Q(x1,y1)因为P为中点所以x=(x1-6)/2y=y1/2得出x1=2x+6y1=2y因为Q在抛物线上所以y1=x1^2+2代入,得2y=(2x+6)^2+2化简得,y=2x^

定点在原点,对称轴是x轴,并且顶点与焦点的距离等于6,求抛物线方程(我要过程,)

解据题意设抛物线方程为y^2=2px则有±p/2=6p=±12因此方程为y^2=±24x

已知抛物线y^2=2x的弦AB过定点(-2,0),求弦AB的中点的轨迹方程.

若AB斜率存在则设AB斜率是ky=k(x+2)=kx+2k所以(kx+2k)²=2xk²x²+(4k²-2)x+4k²=0x1+x2=-(4k&sup

直线L:Y=Kx+M和抛物线 Y^2=2px相交于A、B以AB为直径的圆过抛物线的顶点,证明直线L过定点,求定点

联立方程Y=Kx+M,Y^2=2px﹙Kx+M﹚²=2px→K²x²+2KxM+m²-2px=0设A(x1,y1)、B(x2,y2)x1+x2=﹙2KM+2p﹚

直线L:Y=Kx+M和抛物线 Y^2=2px相交于A、B以AB为直径的圆过抛物线的顶点,证明直线L过定点,求定点

联立方程Y=Kx+M,Y^2=2px﹙Kx+M﹚2=2px→K2x2+2KxM+m2-2px=0设A(x1,y1)

设A(0,a)是y轴上的一个定点,求A到抛物线x^2=4y上的点的最短距离.

设P(x,y)为抛物线上任意一点,则PA^2=(y-a)^2+x^2=y^2-2ay+a^2+4y=(y-(a-2))^2+a^2-(a-2)^2=(y-(a-2))^2+4a-4由于y>=0因此当a

已知定点A(-1,2),B(3,-1),动点p在抛物线y=x^2上,求lPA-PBl的最大值.PS:

当时一种万能解法就是.设直线斜率,各种讨论,各种方程组,各种算.

已知抛物线的定点在原点,对称轴为X轴,抛物线上一点M{-3.m}到焦点的距离等于5求抛物线方程和m值

M(-3,m)到焦点的距离=M到准线的距离是5,即5=|-3|+p/2,所以,p=4又顶点在原点,对称轴是X轴.过(-3,m),故开口向左,得抛物线方程是y^2=-2px=-8x故m^2=-8*(-3

抛物线定点为(-1,1) 且与y轴交于点A(0,-1) 求二次函数解析式

∵抛物线顶点为(-1,1)∴设抛物线的解析式是y=a(x+1)²+1.将点A(0,-1)代入,得a×(0+1)²+1=-1a+1=-1a=-2∴二次函数解析式是:y=-2(x+1)

已知抛物线y^2=2x的焦点为F,定点A(3,2),在抛物线上求一点P,使lPAl+lPFl最小,那么P

点A在抛物线y²=2x内部,由于PF等于点P到准线的距离d,所以,|PA|+|PF|=|PA|+d,当且仅当PA平行x轴时取得最小值,此时P(2,2).

已知抛物线y^2=2x的焦点为F,定点A(3,2),在抛物线上求一点P,使lPAl+lPFl最小,那么P坐标

利用抛物线的定义点A在抛物线y²=2x内部,由于PF等于点P到准线的距离d,所以,|PA|+|PF|=|PA|+d,三点共线时取得最小值.当且仅当PA平行x轴时取得最小值,此时P(2,2).

已知抛物线y^2=2x的焦点为F,定点A(3,2)在抛物线内,求抛物线上点P,使IPAI+IPFI最小,P点坐标是?

抛物线定义PF=P到准线距离做AB垂直准线则当P是AB和抛物线交点时|PA|+|PF|最小则P纵坐标是2所以P(2,2)

已知抛物线y^2=2x的焦点为F,定点A(3,2)在抛物线内,求抛物线上点P,使IPAI+IPFI最小,求出这个最小值.

 y^2=2x  y^2=2px   p=1  准线:x=-p/2=-1/2 焦点(1/2,0)自P点向准线引

根据下列条件求解析式:(1)已知抛物线的定点在原点,且过点(3,-27),求抛物线的函数表达式

由抛物线的顶点在原点:设y=ax²又由过点(3,-27),把这点代入:-27=9a解得:a=-3抛物线的函数表达式为:y=-3x²由抛物线的顶点在y轴:设y=ax²+c又

用导数求切线方程过一定点,求过此定点与一抛物线的切线随便举例,但是一定要用导数求.

假设有一抛物线y=2x^2,求过(1,2)的切线方程.首先对函数求导得到y'=4x,然后把x=1带进去得到y'=4=k也就是斜率,用直线方程的两点式(y-2)=k(x-1),把k代进去,整理得到y=4

过抛物线一定点做一条直线交抛物线于MN ,OM垂直ON,那么定点是多少 可以求么

当然可以求了,有两种方法,极坐标系或直角坐标方程,我用普通的直角坐标解一下抛物线有4种形势,不妨设抛物线方程y^2=2px (p>0,b不等于0)  其余的一个方法

已知抛物线定点在坐标原点,抛物线焦点与椭圆x²/16+y²/15=1的左焦点相同,在抛物线上求一点P

由椭圆方程x²/16+y²/15=1可以求得左焦点为(-1,0)左顶点为(-4,0)又焦点相同可以求得抛物线方程为y²=-4x!设点P坐标为(x,-4x开根号)利用两点距

已知等边三角形的一个顶点位于抛物线y2=2px的焦点,另外两个定点在抛物线上,求这个等边三角形的周长?

不妨设该等边三角形的边长为x.当p>0时由抛物线图像的性质,且等边三角形的一个顶点在抛物线的焦点,即等边三角形也关于X轴对称由焦点(p/2,0)即另一顶点为(p/2+xcos30,xsin30)且在抛

如何用几何画板作过两定点的抛物线

没有直接和简单的方法.可以这么来,先按标准式设抛物线的解析式,代入已知的两点,可以求出只包含一个未知的抛物线解析式,然后将此未知数建立一个参数,不妨给这个未知数赋一个简单值,然后选择新绘函数图像,应该

已知抛物线C的定点在坐标原点,焦点是(3、0)求抛物线C的方程若倾斜角为45度的直线L经过抛物线的焦点F(3

焦点为(3,0),则p=6,抛物线方程为y²=6x.直线被抛物线所截得的弦长为2p/sin²α,本题中α=45°.