求f(x)=2x 1 z^2 z-2的以z=0为中心的罗朗级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:57:17
sin^2(x-y)+sin^2(y-z)+sin^2(z-x)=[1-cos2(x-y)+1-cos2(y-z)+1-cos2(z-x)]/2=3/2-[(cos2xcos2y+sin2xsin2y
dz/dx=y(yf1'+2f2')dz/dy=f(xy,2x+y)++y(xf1'+f2')da/dxdy=(yf1'+2f2')+y【f1'+y(xf1'+f2')+2(xf1'+f2')】=2y
令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a
f(x,y,z)=yz+xz使得,y^2+z^2=1,yz=3令F(x,y,z)=yz+xz+a(y²+z²-1)+b(yz-3)Fx=z=0Fy=z+2ay+bz=0Fz=y+x
LZ,这题怎么搞的,主要思路倒还是不难判断的,但就是很繁琐,用了很多夸张的东西,实在做得我好苦啊!答案是根号2么?我尝试过多种方法,想过直接以三角形是通分化简,实在太繁琐;想过复数模的不等式,也做不下
先求一阶导数,由于f有两个分量,要先对f的两个分量求导,再根据复合函数求导,两个分量对x求导,也就是z对x的一阶导数是:f1*y-f2*y/x^2,接下来再让这个式子对x求导,注意,这里利用乘法的导数
令u=xy,v=x+yz=f(u,v)az/ax=y(fu)+(fv)a^2z/axay=a(az/ax)/ay=a(y(fu)+(fv))/ay=(fu)+y(a(fu)/ay)+a(fv)/ay=
z=f(ye^x,x/y^2),设u=ye^x,v=x/y^2∂z/∂x=[∂z/∂u]*[∂u/∂x]+[∂z/&
两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a
由于f'(x)=arcsiny+2xz则f“(xz)=2x;同理,f'(y)=x/√(1-y²)+z²则f"(yz)=2z;f'(z)=2yz+x²则f"(zz)=2y
两边同时对x求一阶偏导得3x^2+6z*z'-4z'=0(可以解出z’,用z和x表示)再求二阶偏导得6x+6z‘*z’+6z*z''-4z''=0解出z''
你只要X看成是是常数求导就行了,答案就不给你了,自己动手丰衣足食
δz/δx=y^2*f1+(2y-1)*f2δz/δy=2xy*f1+x^2y*2*f2再问:f1和f2是什么?再答:f1表示z对x求导,也可写成fx,(x为下标,在右下角,我不好打,不好意思!)这只
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
再问:可以再帮我答题吗,我这边有很多财富值可以给你再问:
y^3z^2-x^2+xyz-5=0等式两边同时对x求导:∂z/∂x=(2x-yz)/(2zy^3+xy)等式两边同时对y求导:∂z/∂y=-(3y
f(z)=1-2/(z+2)=1-1/[1+(z/2)]=1-1/[1-(-z/2)],根据1/(1-z)=1+z+z^2+...,所以f(z)=z/2-z^2/2^2+z^3/2^3-...+(-1
=x²(y-z)+y²(z-x)+z²(x-z+z-y)=(y-z)(x²-z²)+(z-x)(y²-z²)=(y-z)(x-z)
1.用拉格朗日乘数法没有用柯西不等式的方便(x²+y²+z²)*(1+1+1)≥(x+y+z)²=1当x=y=z时等号成立所以x²+y²+z