求f(x)=2x 1 z^2 z-2的以z=0为中心的罗朗级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:57:17
三角函数最值问题已知x,y,z为实数,求:f(x,y,z)=[sin(x-y)]^2+[sin(y-z)]^2+[sin

sin^2(x-y)+sin^2(y-z)+sin^2(z-x)=[1-cos2(x-y)+1-cos2(y-z)+1-cos2(z-x)]/2=3/2-[(cos2xcos2y+sin2xsin2y

z=yf(xy,2x+y),f有二阶连续偏导数,求аz/аx,аz/аy,аz/аxаy

dz/dx=y(yf1'+2f2')dz/dy=f(xy,2x+y)++y(xf1'+f2')da/dxdy=(yf1'+2f2')+y【f1'+y(xf1'+f2')+2(xf1'+f2')】=2y

设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

f(x,y,z)=yz+xz使得,y^2+z^2=1,yz=3,求f最大值

f(x,y,z)=yz+xz使得,y^2+z^2=1,yz=3令F(x,y,z)=yz+xz+a(y²+z²-1)+b(yz-3)Fx=z=0Fy=z+2ay+bz=0Fz=y+x

设f(x)=[2z+(上面一个ba)z]+1/[2(上面一个ba)z +1],且|z|=1,求|f(z)|的最小值.

LZ,这题怎么搞的,主要思路倒还是不难判断的,但就是很繁琐,用了很多夸张的东西,实在做得我好苦啊!答案是根号2么?我尝试过多种方法,想过直接以三角形是通分化简,实在太繁琐;想过复数模的不等式,也做不下

设z=f(xy,y/x),其中f具有二阶连续偏导数,求a^2z/ax^2,a^2z/axay.

先求一阶导数,由于f有两个分量,要先对f的两个分量求导,再根据复合函数求导,两个分量对x求导,也就是z对x的一阶导数是:f1*y-f2*y/x^2,接下来再让这个式子对x求导,注意,这里利用乘法的导数

设z=f(xy,x+y),且f有连续的二阶偏导数,求a^2z/axay

令u=xy,v=x+yz=f(u,v)az/ax=y(fu)+(fv)a^2z/axay=a(az/ax)/ay=a(y(fu)+(fv))/ay=(fu)+y(a(fu)/ay)+a(fv)/ay=

设函数f可微,z=(ye^x,x/y^2),求∂z/∂x,∂z/∂y

z=f(ye^x,x/y^2),设u=ye^x,v=x/y^2∂z/∂x=[∂z/∂u]*[∂u/∂x]+[∂z/&

设函数f可微,z=f(ye^x,x/(y^2)) 求z/x,z/y

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

设f(x,y,z)=x.arcsiny+yz^2+zx^2,求f(xz),f(yz),f(zz)

由于f'(x)=arcsiny+2xz则f“(xz)=2x;同理,f'(y)=x/√(1-y²)+z²则f"(yz)=2z;f'(z)=2yz+x²则f"(zz)=2y

z=f(x,y) x^3+2y^2+3z^2-4z=0确定的隐函数,求x的二阶偏导

两边同时对x求一阶偏导得3x^2+6z*z'-4z'=0(可以解出z’,用z和x表示)再求二阶偏导得6x+6z‘*z’+6z*z''-4z''=0解出z''

z=f(x^2-y^2,xy),求z关于y的偏导

你只要X看成是是常数求导就行了,答案就不给你了,自己动手丰衣足食

求解z=f(xy^2,x^2y)求δz/δx,δz/δy

δz/δx=y^2*f1+(2y-1)*f2δz/δy=2xy*f1+x^2y*2*f2再问:f1和f2是什么?再答:f1表示z对x求导,也可写成fx,(x为下标,在右下角,我不好打,不好意思!)这只

求积分计算f{|z|=pi}(z/(z+1))*(e^(2/(z+1)))dz

f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|

z=f(x,2x+y,xy),f有一阶连续偏导数,求dz

再问:可以再帮我答题吗,我这边有很多财富值可以给你再问:

设函数z=f(x,y)由方程y^3z^2-x^2+xyz-5=0所确定,求∂z/∂x和ͦ

y^3z^2-x^2+xyz-5=0等式两边同时对x求导:∂z/∂x=(2x-yz)/(2zy^3+xy)等式两边同时对y求导:∂z/∂y=-(3y&#

求f(z)=z/(z+2)展开为z的泰勒级数...

f(z)=1-2/(z+2)=1-1/[1+(z/2)]=1-1/[1-(-z/2)],根据1/(1-z)=1+z+z^2+...,所以f(z)=z/2-z^2/2^2+z^3/2^3-...+(-1

分解因式:f(x,y,z)=x^2(y-z)+y^2(z-x)+z^2(x-y)

=x²(y-z)+y²(z-x)+z²(x-z+z-y)=(y-z)(x²-z²)+(z-x)(y²-z²)=(y-z)(x-z)

1.求函数f(x,y,z)=x^2+y^2+z^2在限制条件x+y+z=1下的最小值

1.用拉格朗日乘数法没有用柯西不等式的方便(x²+y²+z²)*(1+1+1)≥(x+y+z)²=1当x=y=z时等号成立所以x²+y²+z