求y-y=-6x 2的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:10:35
微分方程问题 求(y^2-6x)y'=2y=0 的通解

∵(y^2-6x)y'+2y=0==>(y^2-6x)y'=-2y==>(y^2-6x)dy/dx=-2y==>dx/dy=(y^2-6x)/(-2y)==>dx/dy=3x/y-y/2==>dx/d

求微分方程y'=x/y+y/x的通解

y/x=ty=txy'=t+x*dt/dx=t+1/tx*dt/dx=1/ttdt=dx/x然后再算

求y''-y=x的通解

∵齐次方程y''-y'=0的特征方程是r2-r=0则特征根是r1=0,r2=1∴齐次方程的通解是y=(C1x+C2)e^x(C1,C2是积分常数)设原微分方程的一个特解是y=Ax2+Bx代入原微分方程

求微分方程y'=y/(1+x^2)的通解

y'/y=1/(1+x^2)两边积分logy=arctanx+Cy=e^(arctanx+C)或者写成Ce^(arctanx)C是任意常数

求微分方程y''-6y'+9y=0的通解

y''-6y'+9y=0特征方程r^2-6r+9=0解得r1,2=3所以通解y=(C1+C2x)e^(3x)再问:谢谢!!我懂了

求微分方程y”+y=ex的通解

特征方程为r^2+1=0,r=±i所以y1=C1sinx+C2cosx设y2=Ae^x则y2''=Ae^x2A=1,A=1/2所以y=y1+y2=C1sinx+C2cosx+e^x/2再问:确定吗?怎

求微分方程y'=(1+y^2)/xy的通解

dy/dx=(1+y^2)/(xy)[y/(1+y^2)]dy=dx/x两边积分得1/2[ln(1+y^2)]+c1=ln|x|+c2,c1,c2为任意常数两边都以e为底数得1+y^2=cx^2,c为

高数,急 求微分方程y”+6y'+13y=0的通解

这是一个二阶常系数线性微分方程,直接套用公式即可!

求微分方程y'=e^(2x-y)的通解

y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]

求y''-y=sinx的通解

∵齐次方程y''-y=0的特征方程是r²-1=0,则r=±1∴齐次方程y''-y=0的通解是y=C1e^t+C2e^(-t)(C1,C2是积分常数)∵设原方程的一个解为y=Asinx+Bco

求微分方程y"-2y'+y=0的通解.

你这个是二阶常系数齐次线性微分方程属于r1=r2=1的情况代入公式,y=(C1+C2x)e^(r1x)=(C1+C2x)e^x好好看看书,公式要记得!

求y'=y/(y-x) 的通解

1.y=0且x≠0时,满足原方程2.y≠0时,由已知dy/dx=y/(y-x)得dx/dy=(y-x)/y=1-x/y令x/y=u,则原方程化为u+y(du/dy)=1-u即du/(1-2u)=dy/

求微分方程y"+3y'+2y=6e*的通解

y”+3y’+2y=6e^xt^2+3t+2=0t1=-1t2=-2Y=c1e^(-x)+c2e^(-2x)A=1,不是特征方程t^2+3t+2=0的根,取K=0y*=Be^xy’=Be^xy”=Be

求此微分方程的通解:y''+y'=y'y

令p=y'则y"=pdp/dy代入原式:pdp/dy+p=pydp/dy+1=ydp=(y-1)dy积分:p=(y-1)²/2+c1即dy/dx=(y-1)²/2+c12dy/[(

求微分方程y''+y'-y=0的通解

答:特征方程为:r^2+r-1=0所以特征根为:r1=(-1+√5)/2,r2=(-1-√5)/2所以通解为:y=C1e^((-1+√5)/2)+C2e^((-1-√5)/2)

求微积分y'=y2的通解

dy/dx=y²dy/y²=dx积分-1/y=x+Cy=-1/(x+C)

1、求下列微分方程的通解:(1)2y‘’+y‘-y=2ex (2)2y‘’+5y‘=5x2-2x-1 (3)y‘’-6y

(1)∵它的特征方程是2r²+r-1=0,则r1=-1,r2=1/2∴它对应的齐次方程的通解是y=C1e^(-x)+C2e^(1/2)(C1,C2是积分常数)显然,y=e^x是原方程的特解故

求dy/dx=y/2x+x2/2y的通解

这是一道伯努利方程的题,化成标准形式如下:dy/dx+(-2x^-1)y=(x^2/2)(y^-1)(1)令z=y^[1-(-1)]=y^2,用[1-(-1)]乘方程(1)的两端,得dz/dx+2(-

求微分方程y''+y'-2y=0 的通解.

设y=e^ax带入y''+y'-2y=0求导化简得a^2+a-2=0(a-1)(a+2)=0a=1,a=-2通解为y=e^x+e^-2x+c

求微分方程y"-y'-2y=0的通解

特征方程为r²-r-2=0解得r1=2,若=-1∴原方程的通解为:y=C1e^(2x)+C2e^(-x)