求∫t^2sintdt下限是2x上限是-1的导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:40:40
f(x)cosx+2∫(0~x)f(t)sintdt=x+1两边求导f′(x)cosx-sinxf(x)+2f(x)sinx=1即f′(x)cosx+f(x)sinx=1两边同时除以cos²
∫[0,y]e^tdt=∫[0,x]sintdt两边对t求导得e^y*y'=sinxdy/dx=y'=sinx/e^y
∫(π/2→2π/3)t/(1+cost)*dt,应该是这个吧?cos2t=2cos²t-11+cos2t=2cos²t1+cost=2cos²(t/2)∫t/(1+co
F(t)=∫(上限t下限1)d(y)∫(上限t下限y)f(x)dx,先交换积分限积分域为:y
利用不定积分,∫(0,1)xf(x)dx=0.5∫(0,1)f(x)dx²=【0.5x²f(x)】(0,1)-0.5∫(0,1)x²df(x)①而【0.5x²f
Leibniz公式:d/dx∫(a(x),b(x))f(t)dt=b'(x)*f[b(x)]-a'(x)*f[a(x)]f(x)=∫(π,x)sint/tdtf'(x)=x'*(sinx)/x-π'*
∫和d抵消-∫dx=-x+c=-arccost+c因为aecsint+arccost=π/2所以-arccost+c=aecsint-π/2+c-π/2+c是常数,所以可以写在一起所以=arcsint
渐近线有三种1、水平渐近线若x趋于正无穷或负无穷时,f(x)趋于常数c,则y=c为f(x)的水平渐近线2、垂直渐近线若x趋于某值c时,f(x)趋于无穷,则x=c为f(x)的垂直渐近线,实际上x=c就是
使用洛必达法则以及等价无穷小lim(x→0)(∫0~xarctantdt)/x^2=lim(x→0)arctanx/2x=1/2
解法如下:∫(t-sint)^2sintdt=∫(t^2sint+sint^2sint-2tsint^2)dt=∫t^2sintdt+∫(1-cost^2)sintdt-2∫tsint^2dt=-∫t
两边对x求导得:2f'(x)f(x)=f(x)sinx/(2加cosx)2f'(x)=sinx/(2加cosx)积分得:f(x)=(-1/2)ln|2加cosx|加C因f'(0)=0,C=(1/2)l
结果得3/4计算过程如下:(1):令2x-t=ut:0->x则u:2x->x且dt=-du∫(上限x下限0)tf(2x-t)dt=∫(上限x下限2x)(u-2x)f(u)dtu=∫(上限x下限0)(u
∫(上限2π下限0)f(x)dx=∫(上限2π下限0)costdt=0
详细答案在下面.
假设e^(2t)sint的一个原函数是F(t)则F'(x)=e^(2x)sinx且f(x)=F(-2)-F(x)F(-2)是常数,导数为0所以f'(x)=0-F'(x)=-e^(2x)sinx