求∫t^2sintdt下限是2x上限是-1的导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:40:40
高数:设可导函数f(x)满足f(x)cosx+2∫(0~x)f(t)sintdt=x+1,求f(x)

f(x)cosx+2∫(0~x)f(t)sintdt=x+1两边求导f′(x)cosx-sinxf(x)+2f(x)sinx=1即f′(x)cosx+f(x)sinx=1两边同时除以cos²

定积分上限y下限0,e的t次方dt=定积分上限x下限0sintdt 则dy/dx为=?

∫[0,y]e^tdt=∫[0,x]sintdt两边对t求导得e^y*y'=sinxdy/dx=y'=sinx/e^y

求定积分t/(1+cost),上限π/2,下限是2π/3

∫(π/2→2π/3)t/(1+cost)*dt,应该是这个吧?cos2t=2cos²t-11+cos2t=2cos²t1+cost=2cos²(t/2)∫t/(1+co

二重积分求导 F(t)=∫(上限t 下限1)d(y)∫(上限t 下限y)f(x)dx,求F'(2)=?

F(t)=∫(上限t下限1)d(y)∫(上限t下限y)f(x)dx,先交换积分限积分域为:y

设f(x)=∫(1,x^2)sintdt/t,求∫(0,1)xf(x)dx

利用不定积分,∫(0,1)xf(x)dx=0.5∫(0,1)f(x)dx²=【0.5x²f(x)】(0,1)-0.5∫(0,1)x²df(x)①而【0.5x²f

设f(x)=∫((pi,x) sintdt/t,求∫(0,pi) f(x)dx

Leibniz公式:d/dx∫(a(x),b(x))f(t)dt=b'(x)*f[b(x)]-a'(x)*f[a(x)]f(x)=∫(π,x)sint/tdtf'(x)=x'*(sinx)/x-π'*

求一积分题解题步骤∫(dt/√1-t^2)令t=cosx,dt=-sintdt=∫(-sinxdx/sinx)=-∫dx

∫和d抵消-∫dx=-x+c=-arccost+c因为aecsint+arccost=π/2所以-arccost+c=aecsint-π/2+c-π/2+c是常数,所以可以写在一起所以=arcsint

求函数的渐近线:∫e^(-t^2)dt,积分上下限是,从0到x

渐近线有三种1、水平渐近线若x趋于正无穷或负无穷时,f(x)趋于常数c,则y=c为f(x)的水平渐近线2、垂直渐近线若x趋于某值c时,f(x)趋于无穷,则x=c为f(x)的垂直渐近线,实际上x=c就是

limx趋向0(∫arctan t dt)/x^2 上限x下限0 求极限

使用洛必达法则以及等价无穷小lim(x→0)(∫0~xarctantdt)/x^2=lim(x→0)arctanx/2x=1/2

高数题求积分∫(t-sint)^2sintdt

解法如下:∫(t-sint)^2sintdt=∫(t^2sint+sint^2sint-2tsint^2)dt=∫t^2sintdt+∫(1-cost^2)sintdt-2∫tsint^2dt=-∫t

设f(x)为连续可导函数,f(x)恒不等于0、如果[f(x)]^2=∫(0-x) f(t)sintdt/(2+cost)

两边对x求导得:2f'(x)f(x)=f(x)sinx/(2加cosx)2f'(x)=sinx/(2加cosx)积分得:f(x)=(-1/2)ln|2加cosx|加C因f'(0)=0,C=(1/2)l

已知∫(上限x下限0)tf(2x-t)dt=0.5arctanx^2 ,f(1)=1 ,求∫(上限2下限1)f(x)dx

结果得3/4计算过程如下:(1):令2x-t=ut:0->x则u:2x->x且dt=-du∫(上限x下限0)tf(2x-t)dt=∫(上限x下限2x)(u-2x)f(u)dtu=∫(上限x下限0)(u

设 f(x)=∫(上限x下限0)cost/(2π-t)dt,求∫(上限2π下限0)f(x)dx?

∫(上限2π下限0)f(x)dx=∫(上限2π下限0)costdt=0

f(x)=∫e^(2t )sintdt上限是-2下限是x,求f(X)的导数 正确答案为f′(X)=-e^(2x)sinx

假设e^(2t)sint的一个原函数是F(t)则F'(x)=e^(2x)sinx且f(x)=F(-2)-F(x)F(-2)是常数,导数为0所以f'(x)=0-F'(x)=-e^(2x)sinx