求∫x (1 x²)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:47:17
令t=x*sqrt(x);原式则=2/3*∫sqrt[1/(1-t)]dt=-4/3sqrt(1-t)+C=-4/3*sqrt[1-x*sqrt(x)]+C
∫[1/(1+x^4)]dx=1/2∫[(x^2+1)-(x^2-1)]/(1+x^4)dx=1/2{∫(x^2+1)/(1+x^4)dx-∫(x^2-1)/(1+x^4)dx}=1/2{∫(1+1/
∫1/(e^x)dx=∫(e^-x)dx=-e^(-x)+C
1/4*Ln(2x+1)+1/(4(2x+1))√(x²+4)再问:没看懂上面是两道题再答:知道啊,不是有两答案嘛就是换元法,两个属于同一类。将分母中的1+2x和x²+4换元,再进
解令√x=t则t²=x,dx=2tdt∴∫dx/(1+√x)=∫2tdt/(t+1)=2∫[(t+1)-1]/(t+1)dt=2∫1-1/(t+1)dt=2t-2ln|t+1|+C=2√x-
原式=∫ln(1-x)d(1-x)=(1-x)ln(1-x)-∫(1-x)dln(1-x)=(1-x)ln(1-x)-∫(1-x)*[-1/(1-x)]dx=(1-x)ln(1-x)+∫dx=(1-x
a=√(x+1)x=a²-1dx=2ada所以原式=∫(a²-1)*a*2ada=∫(2a^4-2a²)da=2a^5/5+2a³/3+C=2√(x+1)^5/
很简单啊,好好观察形状就好解了
1/x(x+1)=1/x-1/(x+1)所以原式=∫[(ln(x+1)-lnx]*[1/x-1/(x+1)]dx=∫[(ln(x+1)-lnx]d[lnx-(ln(x+1)]=-∫[lnx-ln(x+
∫xln(x+1)dx=∫ln(x+1)d(1/2*x^2)=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx=1/2
∫ln(x+1)dx=∫ln(x+1)d(x+1)=(ln(x+1))(x+1)-∫(x+1)d(ln(x+1))=(x+1)ln(x+1)-∫((x+1)/(x+1))dx=(x+1)ln(x+1)
∫x*√[(1-x)/(1+x)]dx=∫[x(1-x)/√(1-x^2)]dxletx=sinydy=cosydy∫[x(1-x)/√(1-x^2)]dx=∫siny(1-siny)dy=∫[sin
∫(x^2-3x)/(x+1)dx=∫[(x+1)(x-4)/(x+1)+4/(x+1)]dx=∫(x-4)dx+∫4/(x+1)dx=x²/2-4x+4ln(x+1)+C其中C为任意常数
∫1+lnx/x*dx=∫1/x*dx+∫lnx/x*dx=lnx+∫lnxdlnx=lnx+(lnx)^2+c再问:请问这是完整答案吗,因为本人是数学白痴,不好意思再答:是的完整的答案
令x=tany,dx=sec²ydy∫dx/(1+x²)=∫(sec²ydy)/(1+tan²y)=∫(sec²ydy)/(sec²y),恒
(2x+1)e^(-x)+cln|x+√(x^2-1)|+c再问:第一个的结果没有负号么?第二个求过程……再答:
∫(2x+1)dx=∫2xdx+∫dx=x^2+x+C