f(t)=t^2+3t+2拉普拉斯变换
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:48:19
当t>0时δ(t)=0,ε(t)=1即2δ(t)+6ε(t)=6=6*1的1次方,特解yzs(t)=p*1=常数,所以yzs”(t)=yzs’(t)=0代入yzs”(t)+3yzs’(t)+2yzs(
查傅氏和拉氏变换表有F(1)=2πδ(ω),F(tu(t))=(-1/(ω^2))+πjδˊ(ω)L(e^(at))=1/(s-a),L(sin(at))=a/(s^2+a^2)所以1、F(ω)=eF
这是一个可分离变量的一阶微分方程,原式化为f'(t)/f(t)=2/(2-t),两边积分得:ln|f(t)|=-2ln|2-t|+C1,即ln|f(t)|=ln(2-t)^(-2)+C1两边做指数运算
∫[e^(-2-s)t]dt=[1/(-2-s)]*∫[e^(-2-s)t]d(-2-s)=1/(s+2)
=[1,0,-1];a=[1,4,6,2];[Hjw,w]=freqs(b,a);
书上都写的很明白啊,第一个应该是3,第二个分解一下是1/(S+1)-1/(S+2)²-1/(S+2),所以反变换是e的-t次方减去te的-2次方-e的-2t次方然后乘以一个u(t)
f(t-1)-1=1-f(t)(t-1)^2-(t-1)+1-1=1-t^2-t+1t^2-2t+1-t+1=2-t^2-t2t^2+2t=0t(t+1)=0t=0或者t=-1
由导数的定义可知,f'(0)=lim(t->0)[f(t)-f(0)]/(t-0)=lim(t->0)[f(t)-f(0)]/t,所以lim(t->0)[f(3t)-f(t)]/t=lim(t->0)
根据定义f'(1)=lim[f(1+t)-f(t)]/t,但是题目中所求式中分母是t,但分子两项相差3t,所以若想与f'(1)建立联系,只需在分子上乘3,但此时我们人为地将所求缩小为了原来的1/3,所
函数表达式看不懂;是不是:f(x)=(x-2)+|x|+3再问:是的再答:
2-t>0t-1≥0解得,1≤t<2所以,定义域为D=[1,2)
将函数求导得:f'(x)=2tx+2t^2最小值时,f'(x)=0,所以解得x=-t,将x=-t代入函数,可求出值
答案是1/2乘以y(2t-8),用傅里叶变换的性质,很简单
∵t∈[2,8],∴f(t)∈[12,3]原题转化为:m(x-2)+(x-2)2>0恒成立,为m的一次函数(这里思维的转化很重要)当x=2时,不等式不成立.∴x≠2.令g(m)=m(x-2)(x-2)
答案:2*s/(s^2+1)^2
阶跃函数的拉氏变换换为n/S,n为阶跃的幅值.因此2的拉氏变换为2/S,求的过程
∵f(x)是奇函数∴定义域(t,2t+3)关于原点对称即-t=2t+3∴t=-1故答案是-1
(t-1)u(t-1)+3u(t-1),这两部分都有相应的性质可以用,(t-1)u(t-1)是t*u(t)的拉式变换乘上一个因子,t*u(t)是u(t)的拉氏变换的求导,具体性质记不得了,书上找,很容